United Kingdom
Catalog   /   Small Appliances   /   Health & Rehabilitation   /   Blood Glucose Monitors

Comparison Glanber LBM-01 vs Element Multi

Add to comparison
Glanber LBM-01
Element Multi
Glanber LBM-01Element Multi
Outdated ProductOutdated Product
TOP sellers
Typebiosensor
electrochemical /cholesterol: spectrophotometric/
Measuring duration
5 с /cholesterol - 15 sec; hemoglobin - 5 sec; uric acid - 5 sec/
3 с /cholesterol: 2 minutes/
Memory capacity100 measurements200 measurements
Measurements
Measurements
glucose
cholesterol
glucose
cholesterol
Additional modes
after eating
 
Specs
Measurement range
1.1 – 33.3 mmol/l /cholesterol: 2.58 – 10.34, hemoglobin: 50 – 260, uric acid: 90 – 1190/
0.6 – 33.3 mmol/l /cholesterol: 2.59 – 10.36/
Sample volume1.5 µl0.3 µl
Blood samplecapillarycapillary
Features
date and time
 
voice notification
 
alert
date and time
alarm clock
 
synchronization with PC
 
In box
Test strips40 pcs
10 pcs /cholesterol: 5 pcs/
Test strip modelTC01, BG01, HB01, UA01
Lancets40 pcs20 pcs
Lancet device
Cover/case
General
Displaymonochromemonochrome
Power source
2xAAA /uSB charging/
2xAAA
Dimensions111x59x16 mm61х109х23 mm
Weight110 g78 g
Added to E-Catalogjune 2020april 2020

Type

The type determines the general operating principle of the blood glucose monitor. There are photometric, electrochemical, biosensory ones.

— Photometric. Blood glucode monitors employing color changes in test strips analyze blood composition. These devices assess the color of a test strip with applied blood, compare it to a stored standard, and deduce information about blood composition, particularly glucose levels. This technology, considered outdated, is now rare due to its limited accuracy and the fragility of its optical systems, requiring careful handling.

— Electrochemical. Devices of this type use test strips with reagents that, when reacting with glucose, produce an electric power; The strength of this power determines the blood sugar level. Such devices are quite simple and reliable, at the same time very accurate. The vast majority of modern glucometers operate on the electrochemical principle.

— Biosensory. The term "biosensory" encompasses various operational principles, depending on the blood glucose monitor model. Some devices improve the electrochemical method by incorporating amperometry and coulometry (measuring electric charge). Others use specific technologies like surface plasma resonance. Certain blood glucose monitors of this kind feature a sensor constantly on the skin, drawing blood through a needle immersed in the...body, allowing measurement by holding the device to the sensor. Ongoing developments include biosensor technologies that eliminate the need for blood sampling, enabling blood sugar determination through analyzing saliva, sweat, and other biological fluids. There's potential for such technologies to be introduced in the near future.

Measuring duration

The measurement time of a blood glucose monitor is the duration from inserting a test strip with a blood sample into the device to receiving the result. While a shorter measurement duration theoretically enhances convenience by reducing the time spent on measurements, most modern blood glucose monitors complete this process in under 20 seconds, causing minimal inconvenience. Therefore, seeking the fastest model may not be particularly meaningful in practical terms.

Memory capacity

The maximum number of test results that a blood glucose monitor can store at once is crucial for monitoring changes in blood composition. The built-in memory of blood glucose monitors is highly convenient, automatically saving data without requiring extra steps from the user. Additionally, many devices can enhance measurement results with supplementary information, including date, time, and food markers.

Knowing the frequency of measurements and the amount of memory, you can determine how long this memory will last before overflowing. For example, if the device is designed for 500 results, and measurements are taken 4 times a day, then measurements can be stored in the built-in memory for 500/4 — 125 days, that is, about 4 months.

Additional modes

Test. To verify the functionality and accuracy of a blood glucose monitor, a control solution test is typically performed. This involves applying two control solutions with known glucose concentrations to the strips instead of blood. If the blood glucose monitor readings align with the expected values of the solutions, it indicates proper functionality. Periodic performance tests, ideally conducted weekly, are recommended, especially in cases of doubt about measurement results, such as discrepancies with one's health status.

No food intake. The mode of measuring blood counts on an empty stomach, before meals. It is used, in particular, to diagnose diabetes in the early stages, as well as to evaluate the effectiveness of drug-free (with the help of a diet) treatment of type 1 diabetes. Analysis data is stored in memory marked "on an empty stomach"; this allows you to track the trend over time.

— After eating. The mode of measuring blood parameters "on a full stomach", after eating. It is used, in particular, in insulin-dependent diabetes — to evaluate the effectiveness and correct the current dosage of insulin. The measurement results are stored in memory marked "after eating" in order to make it easier to track changes over a certain period of time.

Measurement range

Measuring range provided by the blood glucose monitor. It is indicated by the level of glucose in the blood that the device is able to detect — from the minimum to the maximum.

Most blood glucose monitors have a measurement range with a safety margin to cover relevant human values. The lower limit is typically no higher than 1.6 mmol/L, corresponding to severe hypoglycemia requiring immediate medical attention. Similarly, the upper limit in most models is around 27 mmol/L or higher, exceeding critically high values. In practical terms, a patient is more likely to fall into a coma than to surpass the blood glucose monitor's measuring range.

Sample volume

The minimum amount of blood required for testing. The average volume of a drop of blood released when pricked with a lancet is 1 µl; that is, if the sample volume is larger, a little more blood will need to be squeezed out.

Note that in fact, the volume can be taken with a margin — most blood glucose monitors work normally even with more blood than necessary. But too little material leads to serious inaccuracies in the readings, so this parameter should not be neglected.

Features

Food note. The feature to annotate measurement results with information about the timing, specifically whether the analysis was conducted before or after a meal, is valuable. Devices with this capability can not only add notes to results but also gather separate statistics, such as averaging, for each result type. This method of data collection is considered optimal because glucose levels before and after a meal are distinct parameters with unique characteristics.

Date and time. The presence of a built-in clock and calendar in the blood glucose monitor. This function is intended mainly to record the time and date of each measurement — an indispensable function for collecting statistics. However, information about the time and date can be useful for purely domestic purposes.

Alarm clock. Classic alarm clock — a sound signal given by the device at a specified time. In glucometers, this function is intended not so much for getting up in the morning (although it can be used for this purpose), but to remind you that the time has come to take another measurement.

Voice notification. Blood glucose monitors with voice capabilities can audibly announce measurement results and may offer other functions through the built-in speaker. This feature is particularly beneficial for indivi...duals with visual impairments who face challenges in reading the display.

Synchronization with PC. The device's ability to sync with a computer, typically through USB connection, allows for the transfer of collected data since the last synchronization. A specialized application on the computer processes this data, offering more extensive functions than the device itself. These may include daily graph plotting, identifying minimum and maximum values, averaging for specific periods (refer to the relevant section), and facilitating data transfer to the attending physician.

Backlight. The presence of a backlight in the display of the device allows you to read readings from it in low light conditions — up to complete darkness. The backlight can turn on automatically or by pressing a special button.

Alert. An audible alert signals users when certain blood parameters reach critical levels, particularly designed for individuals facing health issues that impede reading the display (e.g., blurred vision). The alarm threshold is typically adjustable manually, tailored to individual cases and established in consultation with a doctor.

Auto swicth-off. Automatic shutdown function after a certain period of inactivity. Provides battery saving and eliminates the need for the user to manually turn off the device; some models do not provide manual shutdown at all — only automatic. The auto-off time, usually, is several minutes — in such a way that the user can familiarize himself with the measurement results without fuss.

Auto-ejecting test strip. Automatic ejection of the test strip: when the test is completed and the result is obtained, the device opens the holder, allowing the strip to fall out freely. In models without auto ejection, you usually need to press the appropriate button to remove the strip.

Test strips

The number of test strips included with the blood glucose monitor.

Test strips serve as the primary consumables for blood glucose monitors, typically provided in sets of around 10 to 20 pieces, occasionally up to 50. Since each analysis requires one strip, and diabetes monitoring involves 2 to 8 daily measurements, the supplied strips are mainly for initial device testing and performance evaluation. Additional consumables will need to be purchased for regular use.

Test strip model

The test strip models that the blood glucose monitor is compatible with. This information is especially important in light of the fact that consumables must be purchased separately for continuous use (complete test strips are usually only enough for familiarization and initial testing). For normal operation of the device and reliable results, use only consumables recommended by the manufacturer.
Glanber LBM-01 often compared