Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison Powercom INF-1500 1500 VA vs Powercom SPT-2000 2000 VA

Add to comparison
Powercom INF-1500 1500 VA
Powercom SPT-2000 2000 VA
Powercom INF-1500 1500 VAPowercom SPT-2000 2000 VA
Outdated Product
from $336.00
Outdated Product
TOP sellers
Typesmartsmart
Form factorstandard (Tower)standard (Tower)
Switching to battery4 ms8 ms
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range140-280 V155-300 V
Bypass (direct connection)is absentauto
Output
Output voltage1 phase (230V)1 phase (230V)
Peak output power1500 VA2000 VA
Rated output power1050 W1400 W
Output voltage accuracy5 %
Output waveformpure sine wave (PSW)pure sine wave (PSW)
Output frequency50-60 Hz50-60 Hz
Redundant sockets2
Socket typetype F (Schuko)
Reserved C13/C14 connectors8
Reserved C19/C20 connectors1
Battery
Battery in set
no battery
 
Battery(ies) connection to UPS24 V24 V
Total battery capacity9 Ah
Number of batteries2
Battery typeGEL ( filled with gel)
Full charge time180 min
Max. charging current15 А
Charging current regulation
Cold start
External battery connection
Protection
Protection
short circuit protection
overload protection
noise filtering
 
sound alarm
short circuit protection
overload protection
noise filtering
data line protection
sound alarm
Fuseautoauto
Surge protection405 J420 J
Control interfaces
 
USB
 
RS-232
USB
SmartSlot
General
Screen
Operating temperature0 – 40 °C0 – 40 °C
Noise level45 dB50 dB
Dimensions (HxWxD)200x130x412 mm226x170x450 mm
Weight12.2 kg18.9 kg
Added to E-Catalogmarch 2017november 2015

Switching to battery

The time required to transfer the load from mains power to battery power. In standby and interactive UPSs (see Type), a short-term power failure occurs at this moment — accordingly, the shorter the time to switch to the battery, the more uniform the power supply is provided by the source during a power failure. Ideally, the switching time for the traditional 50 Hz AC frequency should be less than 5 ms (a quarter of one cycle of the sine wave). With inverter UPSs, the transfer time is, by definition, zero.

Input voltage range

In this case, the input voltage range is implied, in which the UPS is able to supply a stable voltage to the load only due to its own regulators, without switching to the battery. For redundant UPSs (see "Type") this range is quite small, approximately 190 to 260 V; for interactive and especially inverter ones, it is much wider. Some UPS models allow you to manually set the input voltage range.

Bypass (direct connection)

Bypass(by-pass) means such a mode of operation of the UPS, in which power is supplied to the load directly from an external source — the mains, diesel generator, etc. — practically without processing in the UPS itself. This mode can be activated either automatically or manually.

— The automatic bypass is a kind of safety measure. It turns on when the UPS in normal mode cannot supply power to the load — for example, when the UPS is overloaded due to a sharp increase in the power consumption of the load.

— Manual bypass allows you to enable this mode at the request of the user, regardless of the operating parameters. This may be necessary, for example, to hot-swap a battery (see below for details) or to start equipment that has a starting capacity greater than that of the UPS. Technically, it can also play the role of a security measure, but automatic systems are more reliable in this sense.

Some UPSs provide both options for enabling the bypass.

Peak output power

The maximum output power supplied by the UPS, in other words, the highest apparent load power allowed for this model.

This indicator is measured in volt-amperes (the general meaning of this unit is the same as that of the watt, and different names are used to separate different types of power). The total power consumption of the load, implied in this case, is the sum of two powers — active and reactive. Active power is actually effective power (it is indicated in watts in the characteristics of electrical appliances). Reactive power is the power wasted by coils and capacitors in AC devices; with numerous coils and/or capacitors, this power can be a fairly significant part of the total energy consumption. Note that for simple tasks, you can use data on effective power (it is often given for UPS — see below); but for accurate electrical calculations it is worth using the full one.

The simplest selection rule for this indicator is: the maximum output power of the UPS in volt-amperes should be at least 1.7 times higher than the total load power in watts. There are also more detailed calculation formulas that take into account the characteristics of different types of load; they can be found in special sources. As for specific values, the most modest modern UPSs give out 700 – 1000 VA, or even less — this is enough to power a PC of average performance; and in the most "heavyweight" models, th...is figure can be 8 – 10 kVA and higher.

Rated output power

The effective output power of the UPS is, in fact, the maximum active power of the load that can be connected to the device.

Active power is consumed directly for the operation of the device; it is expressed in watts. In addition to it, most AC devices also consume reactive power, which is "wasted" (relatively speaking) is spent by coils and capacitors. Apparent power (denoted in volt-amperes) is precisely the sum of active and reactive power; it is this characteristic that should be used in accurate electrical calculations. See "Maximum output power" for details; here we note that when selecting a UPS for a relatively simple application, it is quite possible to use only effective power. This is at least easier than converting the watts claimed in the characteristics of the connected devices into full power volt-amps.

The most modest modern "uninterruptibles" give out less than 500 watts. 501 – 1000 W can be considered an average value, 1.1 – 2 kW is above average, and in the most powerful models this figure exceeds 2 kW and can reach very impressive values (up to 1000 kW or more in some industrial class UPS).

Output voltage accuracy

This parameter characterizes the degree of difference between the AC voltage at the output of the UPS and the perfect voltage, the graph of which has the shape of a regular sinusoid. The perfect voltage is so named because it is the most uniform and creates the least unnecessary load on the connected devices. Thus, the distortion of the output voltage is one of the most important parameters that determine the quality of the power received by the load. A distortion level of 0% means that the UPS produces a perfect sine wave, up to 5% — slight sine wave distortion, up to 18% — strong distortion, from 18% to 40% — a trapezoidal signal, more than 40% — a square wave.

Redundant sockets

The number of outlets connected to the power reserve(battery) provided in the design of the UPS. In order for the UPS to fulfill its main role (providing a backup power in case of power outages), the corresponding electrical appliances must be connected to these outlets. The sockets have a standard shape and are compatible with the vast majority of popular 230 V plugs.

At a minimum, the UPS has 1 or 2 outlets and, in more advanced ones, there may be 3 or more.

Socket type

A socket for a specific type of plug in the UPS design.

Type F (Schuko). A traditional European socket with two round holes in the center and grounding contacts in the form of two metal brackets (at the top and bottom of the socket). The term Schuko stuck to this type of socket due to the abbreviation from the German Schutzkontakt - protective contact.

Type E (French). The French style socket has two round holes and a protruding ground pin just above them in the center. The standard has become widespread in France, Poland and Belgium (along with the traditional type F sockets).

Type G (British). The plug for such sockets consists of two flat horizontal pins and one flat vertical pin for grounding. The standard is found mainly in the countries of the United Kingdom, Malta, Cyprus, Singapore and Hong Kong.

Type B (American). American-style sockets are designed for plugs with two flat prongs and a semicircular grounding contact. Type B is widely used in regions with voltage 110 - 127 V - USA, Japan, Saudi Arabia, etc.

Reserved C13/C14 connectors

Number of C13/C14 connectors with power reserve provided in the UPS design.

Electrical appliances connected to connectors with a reserve are insured against a power failure in the network - in this case they switch to the battery. The C13/C14 connector itself is also known as a “computer socket”; it supplies the same 230 V as a regular household network, but is not compatible with plugs for traditional sockets, because uses three flat contacts. However, there are adapters between these standards.

At a minimum, the UPS is provided with 1, 2 or 3 C13/C14 connectors for one workstation. In more advanced, so to speak office ones, the number of C13/C14 connectors may be greater - 4 ports, 6 connectors, 8 and even more
Powercom INF-1500 often compared