Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison Logicpower LP-UL2000VA 2000 VA vs Elim INPP-1500P 1500 VA

Add to comparison
Logicpower LP-UL2000VA 2000 VA
Elim INPP-1500P 1500 VA
Logicpower LP-UL2000VA 2000 VAElim INPP-1500P 1500 VA
Outdated ProductOutdated Product
User reviews
1
0
0
0
TOP sellers
Typesmartsmart
Form factorstandard (Tower)standard (Tower)
Full load operating time10 min40 min
Switching to battery8 ms
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range145 – 295 V145 – 275 V
Bypass (direct connection)manualis absent
Output
Output voltage1 phase (230V)1 phase (230V)
Peak output power2000 VA1500 VA
Rated output power1200 W
Output waveformsimilar to a sinusoid (approximated)pure sine wave (PSW)
Output frequency50/60 Hz50 Hz
Redundant sockets44
Socket typetype F (Schuko)type F (Schuko)
Battery
1st battery voltage12 V
Total battery capacity9 Ah9 Ah
Number of batteries22
Cold start
Protection
Protection
short circuit protection
overload protection
noise filtering
data line protection
short circuit protection
overload protection
 
 
Fusemeltingauto
Control interfaces
USB
USB
General
Screen
Operating temperature0 – 40 °C0 – 45 °C
Noise level40 dB
Dimensions (HxWxD)230x130x390 mm165х145х365 mm
Weight13 kg9.2 kg
Added to E-Catalogjuly 2022april 2022

Full load operating time

UPS continuous operation time from a fully charged battery when connected to a load with a power equal to the UPS output power (maximum or effective, depending on the type of load, see the relevant paragraphs for details). For a UPS designed to work with a home or office PC, a time of about 10-15 minutes is considered sufficient, this is enough to save data and complete work. To power servers, it is worth using devices with an operating time of 20 minutes or more.

Switching to battery

The time required to transfer the load from mains power to battery power. In standby and interactive UPSs (see Type), a short-term power failure occurs at this moment — accordingly, the shorter the time to switch to the battery, the more uniform the power supply is provided by the source during a power failure. Ideally, the switching time for the traditional 50 Hz AC frequency should be less than 5 ms (a quarter of one cycle of the sine wave). With inverter UPSs, the transfer time is, by definition, zero.

Input voltage range

In this case, the input voltage range is implied, in which the UPS is able to supply a stable voltage to the load only due to its own regulators, without switching to the battery. For redundant UPSs (see "Type") this range is quite small, approximately 190 to 260 V; for interactive and especially inverter ones, it is much wider. Some UPS models allow you to manually set the input voltage range.

Bypass (direct connection)

Bypass(by-pass) means such a mode of operation of the UPS, in which power is supplied to the load directly from an external source — the mains, diesel generator, etc. — practically without processing in the UPS itself. This mode can be activated either automatically or manually.

— The automatic bypass is a kind of safety measure. It turns on when the UPS in normal mode cannot supply power to the load — for example, when the UPS is overloaded due to a sharp increase in the power consumption of the load.

— Manual bypass allows you to enable this mode at the request of the user, regardless of the operating parameters. This may be necessary, for example, to hot-swap a battery (see below for details) or to start equipment that has a starting capacity greater than that of the UPS. Technically, it can also play the role of a security measure, but automatic systems are more reliable in this sense.

Some UPSs provide both options for enabling the bypass.

Peak output power

The maximum output power supplied by the UPS, in other words, the highest apparent load power allowed for this model.

This indicator is measured in volt-amperes (the general meaning of this unit is the same as that of the watt, and different names are used to separate different types of power). The total power consumption of the load, implied in this case, is the sum of two powers — active and reactive. Active power is actually effective power (it is indicated in watts in the characteristics of electrical appliances). Reactive power is the power wasted by coils and capacitors in AC devices; with numerous coils and/or capacitors, this power can be a fairly significant part of the total energy consumption. Note that for simple tasks, you can use data on effective power (it is often given for UPS — see below); but for accurate electrical calculations it is worth using the full one.

The simplest selection rule for this indicator is: the maximum output power of the UPS in volt-amperes should be at least 1.7 times higher than the total load power in watts. There are also more detailed calculation formulas that take into account the characteristics of different types of load; they can be found in special sources. As for specific values, the most modest modern UPSs give out 700 – 1000 VA, or even less — this is enough to power a PC of average performance; and in the most "heavyweight" models, th...is figure can be 8 – 10 kVA and higher.

Rated output power

The effective output power of the UPS is, in fact, the maximum active power of the load that can be connected to the device.

Active power is consumed directly for the operation of the device; it is expressed in watts. In addition to it, most AC devices also consume reactive power, which is "wasted" (relatively speaking) is spent by coils and capacitors. Apparent power (denoted in volt-amperes) is precisely the sum of active and reactive power; it is this characteristic that should be used in accurate electrical calculations. See "Maximum output power" for details; here we note that when selecting a UPS for a relatively simple application, it is quite possible to use only effective power. This is at least easier than converting the watts claimed in the characteristics of the connected devices into full power volt-amps.

The most modest modern "uninterruptibles" give out less than 500 watts. 501 – 1000 W can be considered an average value, 1.1 – 2 kW is above average, and in the most powerful models this figure exceeds 2 kW and can reach very impressive values (up to 1000 kW or more in some industrial class UPS).

Output waveform

The form of a graph describing the changes in voltage at the output of the UPS.

Pure sinewave. The classic AC voltage graph, this is how it changes in an AC network; The sine wave output means that the UPS has little to no distortion compared to the mains. As a result, such power is suitable for any AC technology, and some devices (for example, audio equipment) generally require an exceptionally pure sine wave. However, this requires rather complex technical solutions, and therefore this waveform can be found in expensive interactive and inverter UPSs.

Simulated sine wave (approximated). This signal has a shape close to a sinusoid, but the graph line in this case is not smooth, but consists of separate rectangular “steps”. This waveform is provided by most inexpensive UPSs; such devices are inexpensive and quite suitable for powering computer equipment.

Output frequency

The frequency (frequency range) of the AC voltage output by the UPS. For computer technology, the frequency range of 47-53 Hz is considered normal, although the smaller the deviation from the 50 Hz standard, the better. On the other hand, in some UPS models, this frequency can be automatically synchronized with the frequency of the mains — so the power supplied to the load will not differ regardless of whether the load is powered by the mains or from the battery. In this case, a wider frequency range, on the contrary, is more desirable.

1st battery voltage

The value of the operating voltage of one complete battery. In most cases, it is 12 V, UPS with 24-volt batteries is a little less common.
Logicpower LP-UL2000VA often compared