Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison Volt Polska Sinus PRO 1000W 1000 VA vs Volt Polska Sinus PRO 1000E 1000 VA

Add to comparison
Volt Polska Sinus PRO 1000W 1000 VA
Volt Polska Sinus PRO 1000E 1000 VA
Volt Polska Sinus PRO 1000W 1000 VAVolt Polska Sinus PRO 1000E 1000 VA
Outdated ProductOutdated Product
TOP sellers
Typebacksmart
Form factorshutdown timerstandard (Tower)
Switching to battery4 ms4 ms
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range170 – 270 V170 – 270 V
Max. current20 А10 А
Bypass (direct connection)is absentis absent
Output
Output voltage1 phase (230V)1 phase (230V)
Peak output power1000 VA1000 VA
Rated output power700 W700 W
Output voltage accuracy3 %3 %
Efficiency92 %
Output waveformpure sine wave (PSW)pure sine wave (PSW)
Output frequency50 Hz
Redundant sockets22
Socket typetype F (Schuko)type E (FR)
Battery
Battery in set
no battery
no battery
Battery(ies) connection to UPS12 V12 V
Min. charging current5 А
Max. charging current20 А10 А
Charging current regulation
External battery connection
Protection
Protection
short circuit protection
overload protection
noise filtering
 
short circuit protection
overload protection
noise filtering
sound alarm
Fuseautoauto
General
Screen
Carrying handle
Dimensions (HxWxD)311x232x140 mm170x146x338 mm
Weight6.8 kg6.4 kg
Added to E-Catalogseptember 2023november 2022

Type

Standby. The simplest type of UPS, familiar to most ordinary users. Its main purpose is the ability to “softly” shut down work in case of power problems. When the voltage level is normal, the UPS supplies power to the load from the mains, and when the voltage drops or fails, it switches to its own battery. The resource of this battery is usually small — on the order of several minutes, which is usually enough only to save data. Also, such UPSs can smooth out short-term power surges, however, if such surges occur constantly, this wears out the battery and adversely affects the source itself. Redundant UPSs are widely used in home and office environments, they are usually of low power.

Smart. A kind of development of the idea of backup UPS; such sources not only provide power in case of a decrease or loss of voltage in the network — they also play the role of voltage stabilizers. The design of such UPSs includes a special regulator (usually in the form of a transformer) that compensates for changes in input voltage and supplies a stable voltage to the output. This allows you to supply constant voltage to the load without the use of batteries, making such blocks well suited for operation in networks with unstable voltage — they not only protect the load, but also do not wear out themselves. Interactive UPSs also mostly have low power and battery capacity and are used to protect individual devices.<...br>
— Inverter (online). Another name is "double conversion". The most advanced type of UPS providing the highest degree of protection. The name comes from the inverter — an output voltage generator that directly supplies power to the load. The inverter itself simultaneously receives power from two sources — from the network and from a charged battery. In the event of a critical decrease or loss of voltage in the network, the inverter continues to supply energy, only from the battery. Such a scheme avoids voltage surges when switching from the mains to the battery (which is a serious drawback of the two types of UPS described above and can even damage the especially sensitive electronics connected to them). Inverter UPSs have the highest power (up to the ability to power an entire building) and can be designed for a three-phase connection (see "Input voltage"), and some models allow you to select batteries of different capacities, depending on specific needs. On the other hand, inverter UPSs are not very efficient, noisy and expensive, so they are mainly used when high power or advanced protection is critical.

Low voltage. Miniature UPS for low-voltage electronics backup. Mini devices provide a low voltage DC output (typically 9V, 12V, 15V, or 18V). Traditional sockets are not provided for in their design, and you can usually connect one consumer to them. For example, when there is a power outage from a backup mini-UPS, a short-term autonomous power supply is established for the router (for up to one hour), security systems.

Form factor

Standard (Tower). UPS designed for floor mounting or placement on any suitable horizontal surface. This “installation” is extremely simple, and it is suitable even for the most powerful and heaviest devices, and therefore most modern uninterruptible power supplies (of all categories) are made in the usual Tower form factor. They are supposed to be placed vertically.

Rack. Models for installation in telecommunication racks. Most of these uninterruptible power supplies belong to the professional equipment segment, designed to power servers and other similar electronics (which are also often mounted in a similar way). The most common standard of racks is 19", however there are other options, so it would not hurt to check the compatibility of the UPS with a specific rack separately. We also note that models of this type are often equipped with legs that allow you to place the device on the floor “sideways” or in a vertical position. Display (if available) in such models may have a rotating design for ease of reading parameters in both positions.

Wall-mounted. Uninterruptible power supplies, primarily designed for wall mounting. Wall hanging may be the best option in tight spaces. However, such an installation is not the only option - many devices can optionally be installed on the floor. Also note that wall-mounted UPSs are often used for heating boile...rs. The main disadvantage of this form factor is the need to drill into the walls to install an uninterruptible power supply.

- Flat. UPS, structurally assembled in a low, flat housing. As a rule, this form factor allows for several options for installing equipment: the uninterruptible power supply can be installed horizontally or vertically. However, it is the horizontal method of installing the UPS that predominates. In fact, everything depends on the location of the uninterruptible power supply and its dimensions - it would not hurt to clarify this point separately.

Extension cord. Uninterruptible power supplies that resemble an extension cord in appearance. Structurally, such UPSs consist of a set of sockets in one housing, with the sockets located on the top platform of the uninterruptible power supply. Often, the housing of such UPSs is provided with holes or fasteners for wall mounting.

Max. current

The maximum current drawn by the UPS. In fact, the current reaches its maximum value only when the UPS is operating from the mains with maximum load power and a completely discharged battery. However, when calculating the load on the power grid, this parameter should be taken into account.

Efficiency

Efficiency (coefficient of performance) in the case of a UPS is the ratio of its output power to the power consumed from the network. This is one of the main parameters that determine the overall efficiency of the device: the higher the efficiency, the less energy the UPS wastes (due to heating parts, electromagnetic radiation, etc.). In modern models, the efficiency value can reach 99%.

Output frequency

The frequency (frequency range) of the AC voltage output by the UPS. For computer technology, the frequency range of 47-53 Hz is considered normal, although the smaller the deviation from the 50 Hz standard, the better. On the other hand, in some UPS models, this frequency can be automatically synchronized with the frequency of the mains — so the power supplied to the load will not differ regardless of whether the load is powered by the mains or from the battery. In this case, a wider frequency range, on the contrary, is more desirable.

Socket type

A socket for a specific type of plug in the UPS design.

Type F (Schuko). A traditional European socket with two round holes in the center and grounding contacts in the form of two metal brackets (at the top and bottom of the socket). The term Schuko stuck to this type of socket due to the abbreviation from the German Schutzkontakt - protective contact.

Type E (French). The French style socket has two round holes and a protruding ground pin just above them in the center. The standard has become widespread in France, Poland and Belgium (along with the traditional type F sockets).

Type G (British). The plug for such sockets consists of two flat horizontal pins and one flat vertical pin for grounding. The standard is found mainly in the countries of the United Kingdom, Malta, Cyprus, Singapore and Hong Kong.

Type B (American). American-style sockets are designed for plugs with two flat prongs and a semicircular grounding contact. Type B is widely used in regions with voltage 110 - 127 V - USA, Japan, Saudi Arabia, etc.

Min. charging current

The lowest current value in Amperes at which the UPS battery can be effectively charged. Note that charging with low currents is considered more gentle and extends the service life of the battery, but this increases the duration of the charging process. The optimal charge current is about 10% of the battery capacity.

Max. charging current

The maximum current in Amperes that charges the UPS battery or battery pack. Frequent charging cycles with high currents reduce the service life of the battery. However, charging in this mode will come in handy during regular power outages - it makes sense to use high charging currents when you need to charge the batteries as quickly as possible during the time there is light and be fully prepared for the next outages.

Charging current regulation

Charging current regulation provides optimal conditions for replenishing energy reserves in the UPS battery cells. In uninterruptible power supply models with a similar function, a charge controller is installed with the ability to change the output current depending on the battery used. And in some UPS systems, automation can not only initially select the optimal current strength, but also regulate it during the charging process depending on the condition of the battery, providing the most gentle charging mode. This increases the efficiency of the charging process, helps extend the battery life and avoid damage.
Volt Polska Sinus PRO 1000E often compared