Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   CPUs

Comparison AMD Ryzen 3 Renoir-X 4100 BOX vs AMD Ryzen 3 Summit Ridge 1200 OEM 14 nm

Add to comparison
AMD Ryzen 3 Renoir-X 4100 BOX
AMD Ryzen 3 Summit Ridge 1200 OEM 14 nm
AMD Ryzen 3 Renoir-X 4100 BOXAMD Ryzen 3 Summit Ridge 1200 OEM 14 nm
Compare prices 15Outdated Product
User reviews
0
0
1
0
0
0
31
TOP sellers
Main
Four cores. Unlocked multiplier.
Ryzen 1000 , Ryzen 2000 processors are not supported by motherboards with A520, B550 chipset.
SeriesRyzen 3Ryzen 3
Code nameRenoir (Zen 2)Summit Ridge (Zen)
SocketAMD AM4AMD AM4
Lithography7 nm14 nm
In boxBOX (fan) 
Cores and Threads
Cores4 cores4 cores
Threads8 threads4 threads
Multithreading
Speed
Clock speed3.8 GHz3.1 GHz
TurboBoost / TurboCore4 GHz3.4 GHz
Cache
L1 cache256 KB384 KB
L2 cache2048 KB2048 KB
L3 cache4 MB8 MB
Specs
IGPis absentis absent
TDP65 W65 W
InstructionMMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4A, AES, AVX, AVX 2, BMI1, SHAMMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2
Multiplier31
Free multiplier
PCI Express3.03.0
Max. operating temperature95 °С95 °С
Passmark CPU Mark11148 score(s)6741 score(s)
Geekbench 413774 score(s)
Cinebench R15480 score(s)
Memory
Max. RAM64 GB
Max. DDR4 speed3200 MHz2667 MHz
Channels22
Added to E-Catalogapril 2022may 2018

Code name

This parameter characterizes, firstly, the technical process (see above), and secondly, some features of the internal structure of processors. A new (or at least updated) codename is introduced to the market with each new CPU generation; chips of the same architecture are "coevals", but may belong to different series (see above). At the same time, one generation can include both one and several code names.

Here are the most common Intel codenames today: Cascade Lake-X (10th gen), Comet Lake (10th gen), Comet Lake Refresh (10th generation), Rocket Lake (11th generation), Alder Lake (12th generation), Raptor Lake (13th generation), Raptor Lake Refresh (14th generation).

For AMD, this list includes Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael, Zen4 Phoenix and Zen5 Granite Ridge.

Lithography

The technical process by which the CPU is manufactured.

The parameter is usually specified by the size of the individual semiconductor elements (transistors) that make up the processor integrated circuit. The smaller their size, the more advanced the technical process is considered: miniaturization of individual elements allows you to reduce heat generation, reduce the overall size of the processor and at the same time increase its flow Rate. CPU manufacturers are trying to move towards reducing the technical process, and the newer the processor, the lower the numbers you can see at this point.

The technical process is measured in nanometers (nm). In the modern arena of central processors, solutions made using the 7 nm, 10 nm, 12 nm process technology predominate, high-end CPU models are manufactured using the 4 nm and 5 nm process technology, 14 nm and 22 nm solutions are still afloat, and are rapidly fading into the background, but 28 nm and 32 nm occur periodically.

In box

This parameter does not so much indicate the difference in technical characteristics as it describes the packaging and computer Hardware.

- OEM. The tray package, or OEM, provides that the processor is supplied without a cooling system (CO) and without a branded box - the packaging is usually a simple antistatic bag. You need to select and install cooling for such a CPU separately. In addition, components in tray packaging often have a shorter warranty period than in the box version, and their additional equipment is more meager. On the other hand, such solutions are noticeably cheaper, and the absence of CO allows you to select it separately, without relying on the manufacturer’s choice.

BOX (without cooler). Processors packed in branded boxes, but not equipped with cooling systems (CO). Such packaging is more expensive than OEM, but the warranty period for “boxed” chips is usually much longer (for example, three years instead of one). The absence of a cooler, on the one hand, requires additional efforts to find and install a coolant; on the other hand, cooling can be selected according to your own criteria, without relying on the manufacturer’s choice. However, it is worth considering that when installing a cooler yourself, it is difficult to achieve the same efficiency from it as with a factory installation; This is especially critical if the CPU is planned to be intensively overc...locked; for such modes it is better to choose a box package with a cooler.

BOX (with cooler). Processors packed in branded boxes and equipped with cooling systems (CO). Box packaging itself is more expensive than OEM, but this is compensated by a number of advantages - in particular, more extensive packaging and a longer warranty period. As for the presence of a cooler in the kit, it further increases the overall cost of the CPU, but eliminates the need to bother with the selection and installation of a separate cooling system. It is worth noting that the factory installation of CO allows you to achieve higher efficiency than independent installation, so for high loads (including overclocking) this particular configuration option is best suited. On the other hand, before purchasing, you need to check whether there is enough space in the case for a cooler: complete coolers can be quite bulky, and removing them can be difficult.

MPK (with cooler, without box). The multipack package, or MPK for short, implies the delivery of a processor with a standard boxed cooling cooler, but without a box and accompanying documentation. The processor is usually packaged in a simple antistatic bag. The MPK package is more expensive than OEM due to the presence of a cooling system, but cheaper than BOX (with cooler) due to the absence of a box. At the same time, the multipack kit usually has a shorter warranty period than the BOX delivery option (with a cooler).

Threads

The number of instruction streams that the processor can execute at the same time.

Initially, each physical core (see "Number of cores") was intended to execute one thread of instructions, and the number of threads corresponded to the number of cores. However, there are many processors today that support Hyper-threading or SMT (see below) and can run two threads on each core at once. In such models, the number of threads is twice the number of cores — for example, 8 threads will be indicated in a quad-core chip.

In general, a higher number of threads, other things being equal, has a positive effect on speed and efficiency, but increases the cost of the processor.

Multithreading

Processor support for Hyper-threading.

Hyper-threading is actually a variant of simultaneous multithreading (SMT) developed by Intel and used in its chips since 2002. This technology is used to optimize the load on each physical processor core. Its key principle (simplified) is that each such core is defined by the system as 2 logical cores — for example, the system “sees” a dual-core processor as a quad-core one. At the same time, each physical core constantly switches between two logical cores, in fact, between two threads of commands: when a delay occurs in one thread (for example, in case of an error or while waiting for the result of the previous instruction), the core does not idle, but starts executing the second thread commands. Thanks to this technology, the response time of the processor is reduced, and in server systems, stability is increased with numerous connected users.

In AMD processors, a similar function is used under the original name SMT (see below).

Clock speed

The number of cycles per second that the processor produces in its normal operating mode. A clock is a single electrical impulse used to process data and synchronize the processor with the rest of the computer system. Different operations may require fractions of a clock or several clocks, but anyway, the clock frequency is one of the main parameters characterizing the performance and speed of the processor — all other things being equal, a processor with a higher clock frequency will work faster and better cope with significant loads. At the same time, it should be taken into account that the actual performance of the chip is determined not only by the clock frequency, but also by a number of other characteristics — from the series and architecture (see the relevant paragraphs) to the number of cores and support for special instructions. So it makes sense to compare by clock frequency only chips with similar characteristics belonging to the same series and generation.

TurboBoost / TurboCore

The maximum processor clock speed that can be reached when running in Turbo Boost or Turbo Core overclocking mode.

The name "Turbo Boost" is used for the overclocking technology used by Intel, "Turbo Core" for the solution from AMD. The principle of operation in both cases is the same: if some cores are not used or work under a load below the maximum, the processor can transfer part of the load from the loaded cores to them, thus increasing computing power and performance. Operation in this mode is characterized by an increase in the clock frequency, and it is indicated in this case.

Note that we are talking about the maximum possible clock frequency — modern CPUs are able to regulate the operating mode depending on the situation, and with a relatively low load, the actual frequency may be lower than the maximum possible. See "Clock frequency" for the general meaning of this parameter.

L1 cache

The amount of Level 1 (L1) cache provided by the processor.

Cache is an intermediate memory buffer into which the most frequently used data from RAM is written when the processor is running. This speeds up access to them and has a positive effect on system performance. The larger the cache, the more data can be stored in it for quick access and the higher the performance. Level 1 cache has the highest performance and the smallest volume — up to 128 KB. It is an integral part of any processor.

L3 cache

The amount of cache level 3 (L3) provided in the processor.

Cache is an intermediate memory buffer into which the most frequently used data from RAM is written when the processor is running. This speeds up access to them and has a positive effect on system performance. The larger the cache, the more data can be stored in it for quick access and the higher the performance.
AMD Ryzen 3 Renoir-X often compared
AMD Ryzen 3 Summit Ridge often compared