Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus ROG STRIX X670E-E GAMING WIFI vs Asus ROG STRIX B650E-E GAMING WIFI

Add to comparison
Asus ROG STRIX X670E-E GAMING WIFI
Asus ROG STRIX B650E-E GAMING WIFI
Asus ROG STRIX X670E-E GAMING WIFIAsus ROG STRIX B650E-E GAMING WIFI
Compare prices 9Compare prices 12
TOP sellers
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM5AMD AM5
Form factorATXATX
Power phases2018
VRM heatsink
Heat pipes
POST encoder
LED lighting
Lighting syncAsus Aura SyncAsus Aura Sync
Size (HxW)305x244 mm305x244 mm
Chipset
ChipsetAMD X670EAMD B650E
BIOSAmiAmi
UEFI BIOS
RAM
DDR54 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency6400 MHz8000 MHz
Max. memory192 GB192 GB
EXPO support
Drive interface
SATA 3 (6Gbps)44
M.2 connector44
M.24xPCI-E 4x4xPCI-E 4x
M.2 version3x5.0, 1x4.02x5.0, 2x4.0
M.2 SSD cooling
Integrated RAID controller
Expansion slots
PCI-E 16x slots33
PCI Express5.05.0
Steel PCI-E connectors
Internal connections
USB 2.032
USB 3.2 gen111
USB C 3.2 gen21
USB C 3.2 gen2x21
ARGB LED strip33
RGB LED strip11
Video outputs
HDMI output
HDMI versionv.2.1v.2.1
DisplayPort
DisplayPort versionv.1.4v.1.4
Integrated audio
AudiochipROG SupremeFXROG SupremeFX
AmplifierSavitech SV3H712 AMPSavitech SV3H712 AMP
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
BluetoothBluetooth v 5.2Bluetooth v 5.2
LAN (RJ-45)2.5 Gbps2.5 Gbps
LAN ports11
LAN controllerIntelIntel
External connections
USB 2.04
USB 3.2 gen2106
USB C 3.2 gen221
USB C 3.2 gen2x211
BIOS FlashBack
Clear CMOS
Power connectors
Main power socket24 pin24 pin
CPU power8+8 pin8+8 pin
Fan power connectors88
CPU Fan 4-pin22
CPU/Water Pump Fan 4-pin11
Chassis/Water Pump Fan 4-pin55
Added to E-Catalogoctober 2022october 2022

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

Heat pipes

The heat pipe is a hermetically sealed structure containing a low-boiling liquid. When one end of the tube is heated, this liquid evaporates and condenses at the other end, thus removing heat from the heating source and transferring it to the radiator. Such devices are simple and at the same time effective, so they can be easily used as an addition to radiators.

Chipset

The chipset model installed in the motherboard. AMD's current chipset models are B450, A520, B550, X570, A620, B650, B650E, X670, X670E, X870, X870E.. For Intel, in turn, the list of chipsets looks like this: X299, H410, B460, H470, Z490, H510, B560, H570, Z590, H610, B660, H670, Z690, B760, Z790, Z890.

A chipset is a set of chips on the motherboard through which the individual components of the system interact directly: the processor, RAM, drives, audio and video adapters, network controllers, etc. Technically, such a set consists of two parts — the north and sou...th bridges. The key element is the northbridge, it connects the processor, memory, graphics card and the southbridge (together with the devices it controls). Therefore, it is often the name of the north bridge that is indicated as the chipset model, and the south bridge model is specified separately (see below); it is this scheme that is used in traditional layout motherboards, where bridges are made in the form of separate microcircuits. There are also solutions where both bridges are combined in one chip; for them, the name of the entire chipset can be indicated.

Anyway, knowing the chipset model, you can find various additional data on it — from general reviews to special instructions. An ordinary user, usually, does not need such information, but it can be useful for various professional tasks.

Max. clock frequency

The maximum RAM clock speed supported by the motherboard. The actual clock frequency of the installed RAM modules should not exceed this indicator — otherwise, malfunctions are possible, and the capabilities of the “RAM” cannot be used to the fullest.

For modern PCs, a RAM frequency of 1500 – 2000 MHz or less is considered very low, 2000 – 2500 MHz is modest, 2500 – 3000 MHz is average, 3000 – 3500 MHz is above average, and the most advanced boards can support frequencies of 3500 – 4000 MHz and even more than 4000 MHz.

M.2 version

The version of the M.2 interface determines both the maximum data transfer rate and the supported devices that can be connected via physical M.2 connectors (see the corresponding paragraph).

The version of the M.2 interface in the specifications of motherboards is usually indicated by the number of connectors themselves and by the PCI-E revision provided for in each of them. For example, the entry “3x4.0” means three connectors capable of supporting PCI-E 4.0; and the designation “2x5.0, 1x4.0” means a trio of connectors, two of which support PCI-E 4.0, and another one supports PCI-E 5.0.

USB 2.0

The number of USB 2.0 connectors provided on the motherboard.

USB connectors (all versions) are used to connect to the "motherboard" USB ports located on the front panel of the case. With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of front USB connectors that can be used with it.

Specifically, USB 2.0 is the oldest version widely used nowadays. It provides data transfer rates up to 480 Mbps, is considered obsolete and is gradually being replaced by more advanced standards, primarily USB 3.2 gen1 (formerly USB 3.0). Nevertheless, a lot of peripherals are still being produced under the USB 2.0 connector: the capabilities of this interface are quite enough for most devices that do not require a high connection speed.

USB C 3.2 gen2

The number of USB-C 3.2 gen2 connectors provided in the motherboard.

USB-C connectors (all versions) are used to connect to the "motherboard" USB-C ports located on the outside of the case (usually on the front panel, less often on the top or side). With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of USB-C chassis connectors that can be used with it.

Recall that USB-C is a relatively new type of USB connector, it is distinguished by its small size and double-sided design; such connectors have their own technical features, so separate connectors must be provided for them. Specifically, the USB 3.2 gen2 version (formerly known as USB 3.1 gen2 and USB 3.1) operates at speeds up to 10 Gbps and allows you to implement USB Power Delivery technology, thanks to which the power supply of USB peripherals can reach 100 W per port. However, the presence of Power Delivery in specific motherboards (and even in specific connectors on the same board) should be specified separately.

USB C 3.2 gen2x2

The number of USB-C 3.2 gen2x2 ports provided on the motherboard.

USB-C is a universal connector. It is slightly larger than microUSB, has a convenient double-sided design (it doesn’t matter which side you connect the plug), and also allows you to implement increased power supply and a number of special functions. In addition, the same connector is standardly used in the Thunderbolt v3 interface, and technically it can be used for other interfaces.

As for the specific version of USB-C 3.2 gen2x2, it allows you to achieve a connection speed of 20 Gbps — that is, twice as fast as USB-C 3.2 gen2, hence the name. It is also worth noting that the connection according to the 3.2 gen2x2 standard is implemented only through USB-C connectors and is not used in ports of earlier standards.

USB 2.0

The number of USB 2.0 connectors installed on the back of the motherboard.

Recall that USB is the most popular modern connector for connecting various external peripherals — from keyboards and mice to specialized equipment. And USB 2.0 is the oldest version of this interface that is relevant today; it is noticeably inferior to the newer USB 3.2 both in terms of speed (up to 480 Mbps), and in terms of power supply and additional functionality. On the other hand, even such characteristics are often enough for undemanding peripherals (like the same keyboards / mice); and devices of newer versions can be connected to the connectors of this standard — there would be enough power supply. So this version of USB is still found in modern motherboards, although there are fewer and fewer new models with USB 2.0 connectors.

Note that in addition to the connectors on the rear panel, connectors on the board itself (more precisely, ports on the PC case connected to such connectors) can also provide a USB connection. See below for more on this.
Asus ROG STRIX X670E-E GAMING WIFI often compared
Asus ROG STRIX B650E-E GAMING WIFI often compared