Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus ROG STRIX X670E-E GAMING WIFI vs Asus ROG STRIX X670E-F GAMING WIFI

Add to comparison
Asus ROG STRIX X670E-E GAMING WIFI
Asus ROG STRIX X670E-F GAMING WIFI
Asus ROG STRIX X670E-E GAMING WIFIAsus ROG STRIX X670E-F GAMING WIFI
Compare prices 8Compare prices 11
TOP sellers
Main
Power supply circuit 16+2+2: 16 phases - processor core, 2 phases - SoC (Ryzen I/O chiplet), 2 phases - VDD_MISC (integrated graphics output). Each channel of the VCore phase and integrated graphics has a superferrite choke and an ISL99390 transistor assembly from Renesas (up to 90A).
PCI-E 5.0 signal amplifiers (re-drivers) from Phison. The board's audio circuits use Nichicon Fine Gold capacitors and an operational amplifier from Savitech.
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM5AMD AM5
Form factorATXATX
Power phases2018
VRM heatsink
Heat pipes
POST encoder
LED lighting
Lighting syncAsus Aura SyncAsus Aura Sync
Size (HxW)305x244 mm305x244 mm
Chipset
ChipsetAMD X670EAMD X670E
BIOSAmiAmi
UEFI BIOS
RAM
DDR54 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency6400 MHz8000 MHz
Max. memory192 GB192 GB
EXPO support
Drive interface
SATA 3 (6Gbps)44
M.2 connector44
M.24xPCI-E 4x4xPCI-E 4x
M.2 version3x5.0, 1x4.02x5.0, 2x4.0
M.2 SSD cooling
Integrated RAID controller
Expansion slots
1x PCI-E slots1
PCI-E 16x slots32
PCI Modes16x/4x
PCI Express5.05.0
Steel PCI-E connectors
Internal connections
USB 2.032
USB 3.2 gen111
USB C 3.2 gen2x211
ARGB LED strip33
RGB LED strip11
Video outputs
HDMI output
HDMI versionv.2.1v.2.1
DisplayPort
DisplayPort versionv.1.4v.1.4
Integrated audio
AudiochipROG SupremeFXROG SupremeFX
AmplifierSavitech SV3H712 AMPSavitech SV3H712 AMP
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
BluetoothBluetooth v 5.2Bluetooth v 5.2
LAN (RJ-45)2.5 Gbps2.5 Gbps
LAN ports11
LAN controllerIntelIntel
External connections
USB 2.02
USB 3.2 gen2107
USB C 3.2 gen222
USB C 3.2 gen2x211
BIOS FlashBack
Clear CMOS
Power connectors
Main power socket24 pin24 pin
CPU power8+8 pin8+8 pin
Fan power connectors88
CPU Fan 4-pin22
CPU/Water Pump Fan 4-pin11
Chassis/Water Pump Fan 4-pin55
Added to E-Catalogoctober 2022october 2022

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

POST encoder

Standard digital indication system for displaying POST codes for motherboard initialization. Thanks to the POST encoder, you can easily determine which component has a problem.

Max. clock frequency

The maximum RAM clock speed supported by the motherboard. The actual clock frequency of the installed RAM modules should not exceed this indicator — otherwise, malfunctions are possible, and the capabilities of the “RAM” cannot be used to the fullest.

For modern PCs, a RAM frequency of 1500 – 2000 MHz or less is considered very low, 2000 – 2500 MHz is modest, 2500 – 3000 MHz is average, 3000 – 3500 MHz is above average, and the most advanced boards can support frequencies of 3500 – 4000 MHz and even more than 4000 MHz.

M.2 version

The version of the M.2 interface determines both the maximum data transfer rate and the supported devices that can be connected via physical M.2 connectors (see the corresponding paragraph).

The version of the M.2 interface in the specifications of motherboards is usually indicated by the number of connectors themselves and by the PCI-E revision provided for in each of them. For example, the entry “3x4.0” means three connectors capable of supporting PCI-E 4.0; and the designation “2x5.0, 1x4.0” means a trio of connectors, two of which support PCI-E 4.0, and another one supports PCI-E 5.0.

1x PCI-E slots

Number of PCI-E (PCI-Express) 1x slots installed on the motherboard. There are motherboards for 1 PCI-E 1x slot, 2 PCI-E 1x slots, 3 PCI-E 1x ports and even more.

The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. Accordingly, PCI-E 1x is the basic, slowest version of this interface. The data transfer rate for such slots depends on the PCI-E version (see "PCI Express Support"): in particular, it is slightly less than 1 GB / s for version 3.0 and slightly less than 2 GB / s for 4.0.

Separately, we note that the general rule for PCI-E is as follows: the board must be connected to a slot with the same or more lines. Thus, only single-lane boards will be guaranteed to be compatible with PCI-E 1x.

PCI-E 16x slots

Number of PCI-E (PCI-Express) 16x slots installed on the motherboard.

The PCI Express bus is used to connect various expansion cards — network and sound cards, video adapters, TV tuners and even SSD drives. The number in the name indicates the number of PCI-E lines (data transfer channels) supported by this slot; the more lines, the higher the throughput. 16 lanes is the largest number found in modern PCI Express slots and cards (more is technically possible, but the connectors would be too bulky). Accordingly, these slots are the fastest: they have a data transfer rate of 16 GB / s for PCI-E 3.0 and 32 GB / s for version 4.0 (for more information about the versions, see "PCI Express Support").

Separately, we note that it is PCI-E 16x that is considered the optimal connector for connecting video cards. However, when choosing a motherboard with several such slots, it is worth considering the PCI-E modes supported by it (see below). In addition, we recall that the PCI Express interface allows you to connect boards with a smaller number of lines to connectors with numerous lines. Thus, PCI-E 16x will fit any PCI Express card.

It is also worth mentioning that in the design of modern "motherboards" there are slots of increased sizes — in particular, PCI-E 4x, corresponding in size to PCI-E 16x. However, the type of PCI-E slots in our catalog is indicated by the actual throughput; so only connectors that support 16x speed are considered as PCI-E 16x.

PCI Modes

Operating modes of PCI-E 16x slots supported by the motherboard.

For more information about this interface, see above, and information about the modes is indicated if there are several PCI-E 16x slots on the board. This data specifies at what speed these slots can operate when expansion cards are connected to them at the same time, how many lines each of them can use. The fact is that the total number of PCI-Express lanes on any motherboard is limited, and they are usually not enough for the simultaneous operation of all 16-channel slots at full capacity. Accordingly, when working simultaneously, the speed inevitably has to be limited: for example, recording 16x / 4x / 4x means that the motherboard has three 16-channel slots, but if three video cards are connected to them at once, then the second and third slots will be able to give speed only to PCI-E 4x level. Accordingly, for a different number of slots and the number of digits will be appropriate. There are also boards with several modes — for example, 16x/0x/4 and 8x/8x/4x (0x means that the slot becomes inoperable altogether).

You have to pay attention to this parameter mainly when installing several video cards at the same time: in some cases (for example, when using SLI technology), for correct operation of video adapters, they must be connected to slots at the same speed.

USB 2.0

The number of USB 2.0 connectors provided on the motherboard.

USB connectors (all versions) are used to connect to the "motherboard" USB ports located on the front panel of the case. With a special cable, such a port is connected to the connector, while one connector, usually, works with only one port. In other words, the number of connectors on the motherboard corresponds to the maximum number of front USB connectors that can be used with it.

Specifically, USB 2.0 is the oldest version widely used nowadays. It provides data transfer rates up to 480 Mbps, is considered obsolete and is gradually being replaced by more advanced standards, primarily USB 3.2 gen1 (formerly USB 3.0). Nevertheless, a lot of peripherals are still being produced under the USB 2.0 connector: the capabilities of this interface are quite enough for most devices that do not require a high connection speed.

USB 2.0

The number of USB 2.0 connectors installed on the back of the motherboard.

Recall that USB is the most popular modern connector for connecting various external peripherals — from keyboards and mice to specialized equipment. And USB 2.0 is the oldest version of this interface that is relevant today; it is noticeably inferior to the newer USB 3.2 both in terms of speed (up to 480 Mbps), and in terms of power supply and additional functionality. On the other hand, even such characteristics are often enough for undemanding peripherals (like the same keyboards / mice); and devices of newer versions can be connected to the connectors of this standard — there would be enough power supply. So this version of USB is still found in modern motherboards, although there are fewer and fewer new models with USB 2.0 connectors.

Note that in addition to the connectors on the rear panel, connectors on the board itself (more precisely, ports on the PC case connected to such connectors) can also provide a USB connection. See below for more on this.
Asus ROG STRIX X670E-E GAMING WIFI often compared
Asus ROG STRIX X670E-F GAMING WIFI often compared