Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison AOpen PV11a vs Asus ZenBeam E2

Add to comparison
AOpen PV11a
Asus ZenBeam E2
AOpen PV11aAsus ZenBeam E2
from £203.18 
Outdated Product
Compare prices 7
TOP sellers
Main functionportableportable
Lamp and image
Lamp typeLEDLED
Service life20000 h30000 h
Service life (energy-saving)30000 h
Brightness360 lm300 lm
Brightness ANSI Lumens100 lm
Static contrast1 000:1400:1
Colour rendering16.7 million colours16.7 million colours
Projection system
TechnologyDLPDLP
Size0.2"0.2"
Real resolution854x480 px854x480 px
Max. video resolution1600x1200 px1920x1200 px
Image format support16:9, 4:34:3, 16:9
Projecting
Rear projection
Throw distance, min0.86 m0.5 m
Throw distance, max2.88 m3.7 m
Image size30 – 100 "16 – 120 "
Throw ratio1.3:11.3:1
Zoom and focusmanualmanual
Keystone correction (vert), ±35 °40 °
Keystone correction (horizontal), ±35 °
Features
Features
 
MHL support
BluetoothBluetooth ready
Wi-FiWi-Fi ready
Hardware
USB 2.011
Number of speakers11
Sound power2 W5 W
HDMI inputs11
HDMI versionv 1.4
Audio connectors
3.5 mm output (mini-Jack)
3.5 mm output (mini-Jack)
General
Noise level (nominal)25 dB30 dB
Noise level (energy-saving / quiet)24 dB28 dB
Power sourcemains / batterymains / battery
Battery capacity5200 mAh
Operating time4 h
Operating time (energy-saving mode)2 h
Power consumption40 W50 W
Size (HxWxD)41x114x114 mm40x110x107 mm
Weight0.42 kg0.41 kg
Color
Added to E-Catalognovember 2022may 2022

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Service life (energy-saving)

When working in economy mode, the brightness of the backlight is noticeably reduced, on average by 30-50%. With a decrease in brightness, heat dissipation also decreases, which saves the working life of the illuminator, thereby increasing the lamp life. Thus, the ECO mode allows you to extend the lamp life by an average of 30%. If the typical projector lamp life is 4000 hours, regular use of the ECO mode will extend the backlight life to approximately 5500 hours.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Static contrast

The static contrast of the image provided by the projector.

Static contrast refers to the maximum difference between the brightest white light and the darkest black that a projector can provide within a single frame. Unlike dynamic contrast (see below), this parameter describes not conditional, but quite real capabilities of the device, achievable without the use of any additional tricks like auto-brightness. And since the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas.

Max. video resolution

The actual maximum frame resolution that the projector is capable of processing and displaying.

Many models allow project images at a higher resolution than the actual resolution of the projector matrix (see above). For example, a 1920x1080 video can be displayed on a device with a frame size of 1024x768. However, the quality of such an image will be noticeably lower than on a projector, which initially has a resolution of 1920x1080.

The maximum resolution is closely related to both the overall picture quality and the size of the projection screen. The higher the resolution, the sharper the image details become. Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between the Quad HD and 4K formats. A high-resolution picture will be able to show itself on a truly large screen.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

Rear projection

The ability of the projector to operate in the rear projection mode (“mirroring” the image).

There are two main types of rear projection. Most often, horizontal mirroring is found in projectors — it is used when installing the device behind a translucent screen. Vertical inversion, in turn, is used in projectors with fixed keystone correction — due to their design, when mounted under the ceiling, such devices must be turned upside down, which requires the corresponding correction of the displayed image.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.