United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Epson EH-LS650 vs Epson EH-LS800

Add to comparison
Epson EH-LS650
Epson EH-LS800
Epson EH-LS650Epson EH-LS800
Compare prices 11Compare prices 17
TOP sellers
Main functionhomehome
Operating systemAndroid TV 11.0Android TV 11.0
Lamp and image
Lamp typeLaser-LEDLaser-LED
Number of lamps3
Service life20000 h20000 h
Lamp power73 W
Brightness4000 lm
Brightness ANSI Lumens3600 lm
Dynamic contrast2 500 000:12 500 000:1
Colour rendering1 billion colours1 billion colours
Frame rate192 – 240 Hz
Projection system
Technology3LCD3LCD
Size0.62"0.62"
Real resolution4096х2160 px3840x2160 px
Max. video resolution4096x2160 px
Image format support16:916:9, 4:3
HDR support
Brightness/contrast enhancement
Resolution enhancement
Projecting
Rear projection
Throw distance, min0.32 m0.3 m
Throw distance, max0.7 m0.5 m
Image size60 – 120 "80 – 150 "
Throw ratio0.25 — 0.62:10.16:1 – 0.4:1
Digital zoom2.5 x
Zoom and focusmanualmanual
Auto keystone correction
Features
Features
 
voice control
voice assistant
DLNA support
voice control
voice assistant
BluetoothBluetooth readyv 4.2
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 5 (802.11ac)
Chromecast
Hardware
USB 2.033
Speaker systemYamaha
Number of speakers32
Subwoofer
Sound power20 W20 W
HDMI inputs23
HDMI versionv 2.1
Audio connectors
 
optical
3.5 mm output (mini-Jack)
 
Service connectors
USB (slave)
USB (slave)
General
Noise level (nominal)36 dB32 dB
Noise level (energy-saving / quiet)23 dB19 dB
Power sourcemainsmains
Power consumption264 W350 W
Size (HxWxD)153x467x400 mm156x695x341 mm
Weight7.4 kg12.3 kg
Color
Added to E-Catalognovember 2023february 2023

Number of lamps

The number of lamps provided in the design of the projector.

Most modern projectors have one lamp, but there are also multi-lamp models. More lamps increase the light flow and, accordingly, the brightness of the image provided by the projector. In addition, in models with 4 lamps, it may be possible to continue working even if one of the lamps burns out — the brightness of the remaining ones is enough to provide the desired brightness. In two-lamp versions, most often you have to change a burned-out lamp.

Lamp power

The power consumption of the backlight lamp installed in the projector.

Theoretically, the more powerful the lamp, the brighter it is. However, this is only true when comparing lamps of the same type (see above); and even in this case, the brightness may also depend on the nuances of the design. Therefore, when evaluating the capabilities of a lamp, it is worth focus not so much on power, but on the directly claimed brightness in lumens (see below).

But what this parameter directly affects is the total power consumption of the projector: the lamp is the most “greedy” component of the device, compared to it, the power consumption of the rest of the electronics is very small. Also note that many powerful lamps have high heat dissipation and require cooling systems, which affects the size and weight of the projector.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Frame rate

Frame rate, simply put, is the frame rate supported by the projector.

For normal playback, it is highly desirable that the frame rate of the projector match the original frame rate of the video signal. However, most modern models do not support a specific frame rate, but a whole range of frequencies, and quite an extensive one at that.

Note that for viewing most video materials, the range from 24 to 60 fps is quite enough. The exception is 3D content, which may require double the frame rate, up to 120Hz (see " 3D Support " for details).

Real resolution

The native resolution of the image produced by the projector matrix.

The minimum for modern projectors is actually the VGA standard, which assumes a resolution of 800x600 or close to it. The most limited of modern high-definition standards is HD (720); the classic size of such a frame is 1280x720, but projectors also have other options (up to 1920x720). A more advanced HD format is Full HD (1080), which also has several variations (the most popular is 1920x1080). And among high-end projectors there are models of Quad HD, Ultra HD (4K) and even Ultra HD (8K) standards.

In general, the higher the resolution, the clearer and more detailed image the projector can produce. On the other hand, this indicator directly affects the cost, and all the benefits of high resolution can only be appreciated if the reproduced content also corresponds to it. Note that modern projectors can work with higher resolutions than the “native” ones – for more details, see “Maximum video resolution”.

Max. video resolution

The actual maximum frame resolution that the projector is capable of processing and displaying.

Many models allow project images at a higher resolution than the actual resolution of the projector matrix (see above). For example, a 1920x1080 video can be displayed on a device with a frame size of 1024x768. However, the quality of such an image will be noticeably lower than on a projector, which initially has a resolution of 1920x1080.

The maximum resolution is closely related to both the overall picture quality and the size of the projection screen. The higher the resolution, the sharper the image details become. Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between the Quad HD and 4K formats. A high-resolution picture will be able to show itself on a truly large screen.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

Brightness/contrast enhancement

Support by the projector of one or another technology of brightness/contrast enhancement.

Usually in such case, software image processing is implied to improve brightness and/or contrast (if necessary). Specific processing methods may be different — in particular, in some cases we are actually talking about turning standard content into HDR, and some manufacturers do not specify technical details at all. The effectiveness of different technologies can also be different, and besides, it is highly dependent on the specific content: in some cases, the improvement will be obvious, in others it may be almost imperceptible.
Epson EH-LS650 often compared
Epson EH-LS800 often compared