Dark mode
United Kingdom
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison TP-LINK Archer AX1800 vs TP-LINK Archer C80

Add to comparison
TP-LINK Archer AX1800
TP-LINK Archer C80
TP-LINK Archer AX1800TP-LINK Archer C80
Compare prices 8Compare prices 16
TOP sellers
Main
Works in two modes, router and access point.
Product typerouterrouter
Data input (WAN-port)
Ethernet (RJ45)
Ethernet (RJ45)
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 6 (802.11ax)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
 
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesdual-band (2.4 GHz and 5 GHz)dual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz574 Mbps600 Mbps
Wireless speed 5 GHz1201 Mbps1300 Mbps
Connection and LAN
WAN
1 port
1 Gbps
1 port
1 Gbps
LAN
4 ports
1 Gbps
4 ports
1 Gbps
Antenna and transmitter
Number of antennas44
Antenna typeexternalexternal
MU-MIMO
Transmitter power23 dBm23 dBm
Signal strength 2.4 GHz20 dBm20 dBm
Signal strength 5 GHz23 dBm23 dBm
Hardware
CPU cores2
Clock Speed1.2 GHz
Functions
Features
NAT
MESH mode
Beamforming
firewall
NAT
 
Beamforming
firewall
More features
DHCP server
VPN
DDNS
DMZ
DHCP server
VPN
DDNS
DMZ
Security
Safety standards
WPA
WEP
WPA2
WPA3
802.1x
WPA
WEP
WPA2
 
802.1x
General
Operating temperature0 °C ~ +40 °C0 °C ~ +40 °C
Dimensions260x135x39 mm215x117x32 mm
Color
Added to E-Catalogseptember 2023july 2020

Wi-Fi standards

Wi-Fi standards supported by the equipment. Nowadays, in addition to modern standards Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax)(its variation Wi-Fi 6E), Wi-Fi 7 (802.11be) and WiGig (802.11ad), you can meet also support for earlier versions — Wi-Fi 3 (802.11g) and even Wi-Fi 1 (802.11b). Here is a more detailed description of each of these versions:

— Wi-Fi 3 (802.11g). An outdated standard, like Wi-Fi 1 (802.11b), which has sunk into oblivion. It was widely used before the advent of Wi-Fi 4, nowadays it is used mainly as an addition to newer versions — in particular, in order to ensure compatibility with outdated and low-cost equipment. Operates at a frequency of 2.4 GHz, the maximum data transfer rate is 54 Mbps.

— Wi-Fi 4 (802.11n). The first of the common standards that supports the frequency of 5 GHz; can operate in this range or in the classic 2.4 GHz. It is worth emphasizing that some models of Wi-Fi equipment for this standard use only 5 GHz, which is why they are incompatible with earlier versions of Wi-Fi. The maximum speed for Wi-Fi 4 is 600 Mbps; in modern wireless devices, this standard is very popular, only recently it began to be squeezed into this position by Wi-Fi 5.

— Wi-Fi 5...(802.11ac). The successor to Wi-Fi 4, which finally moved to the 5 GHz band, which had a positive effect on the reliability of the connection and data transfer rate: it is up to 1.69 Gbps per antenna and up to 6.77 Gbps in general. In addition, this is the first version to fully implement Beamforming technology (for more details, see "Functions and Capabilities").

— Wi-Fi 6, Wi-Fi 6E (802.11ax). The development of Wi-Fi 5, which introduced both an increase in speed to 10 Gbps, and a number of important improvements in the format of work. One of the most important innovations is the use of an extensive frequency range — from 1 to 7 GHz; this, in particular, allows you to automatically select the least loaded frequency band, which has a positive effect on the speed and reliability of the connection. At the same time, Wi-Fi 6 devices are capable of operating at classic frequencies of 2.4 GHz and 5 GHz, and a modification of the Wi-Fi 6E standard is capable of operating at frequencies from 5.9 to 7 GHz, it is generally accepted that devices with Wi-Fi 6E support operate on frequency of 6 GHz, while there is full compatibility with earlier standards. In addition, some improvements were introduced in this version regarding the simultaneous operation of several devices on one channel, in particular, we are talking about OFDMA technology. Thanks to this, Wi-Fi 6 gives the smallest of modern standards a drop in speed when the air is loaded, and the modification of Wi-Fi 6E operating at a frequency of 6 GHz has the least amount of interference.

— Wi-Fi 7 (802.11be). This Wi-Fi standard began to be implemented in 2023. Thanks to the use of 4096-QAM modulation, a maximum theoretical data rate of up to 46 Gb / s can be squeezed out of it. Wi-Fi 7 supports three frequency bands: 2.4 GHz, 5 GHz and 6 GHz. The maximum bandwidth in the standard has been increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit overnight. Among the interesting innovations in Wi-Fi 7, the development of MLO (Multi-Link Operation) is noted - with its help, connected devices exchange data using several channels and frequency bands simultaneously, which is especially important for VR and online games. The Multiple Resource Unit technology is designed to minimize communication delays when there are many connected client devices. The new 16x16 MIMO protocol is also aimed at increasing throughput with a large number of simultaneous connections, doubling the number of spatial streams compared to the previous Wi-Fi 6 standard.

WiGig (802.11ad). Wi-Fi standard using an operating frequency of 60 GHz; data transfer rates can be up to 10 Gbps (depending on the specific version of WiGig). The 60 GHz channel is much less loaded than the more popular 2.4 GHz and 5 GHz, which has a positive effect on the reliability of data transmission and reduces latency; the latter is especially important in games and some other special tasks. On the other hand, the increase in frequency has significantly reduced the connection range (for more details, see "Frequency range"), so that in fact this standard is only suitable for communication within the same room.

Note that in fact, the data transfer rate is usually much lower than the theoretical maximum — especially when several Wi-Fi devices operate on the same channel. Also note that different standards are backwards compatible with each other (with a speed limit according to the slower one) provided that the frequencies match: for example, 802.11ac can work with 802.11n, but not with 802.11g.

Wireless speed 2.4 GHz

The maximum speed provided by the device when communicating wirelessly in the 2.4 GHz band.

This range is used in most modern Wi-Fi standards (see above) - as one of the available or even the only one. The theoretical maximum for it is 600 Mbit. In reality, Wi-Fi at a frequency of 2.4 GHz is used by a large number of client devices, from which congestion of data transmission channels emerges. Also, the number of antennas affects the speed performance of the equipment. It is possible to achieve the speed declared in the specification only in an ideal situation. In practice, it can be noticeably smaller (often by several times), especially with an abundance of wireless technology simultaneously connected to the equipment. The maximum speed at 2.4 GHz is specified in the characteristics of specific models to understand the real capabilities of Wi-Fi equipment. As for the numbers, according to the capabilities in the 2.4 GHz band, modern equipment is conditionally divided into models with speeds up to 500 Mbit inclusive and over 500 Mbit.

Wireless speed 5 GHz

The maximum speed supported by the device when communicating wirelessly in the 5 GHz band.

This range is used in Wi-Fi 4, Wi-Fi 6 and Wi-Fi 6E as one of the available bands, in Wi-Fi 5 as the only one (see "Wi-Fi Standards"). The maximum speed is specified in the specifications in order to indicate the real capabilities of specific equipment - they can be noticeably more modest than the general capabilities of the standard. Also, in fact, it all depends on the generation of Wi-Fi. For example, devices with Wi-Fi 5 support can theoretically deliver up to 6928 Mbit (using eight antennas), with Wi-Fi 6 support up to 9607 Mbit (using the same eight spatial streams). The maximum possible communication speed is achieved under certain conditions, and not every model of Wi-Fi equipment fully satisfies them. Specific figures are conditionally divided into several groups: the value up to 500 Mbit is rather modest, many devices support speeds in the range of 500 - 1000 Mbit, indicators of 1 - 2 Gbps can be attributed to the average, and the most advanced models in class provide a data exchange rate of over 2 Gbps.

CPU cores

The number of cores in the processor installed in the device. The core in this case refers to the part of the processor that executes one thread of instructions. Accordingly, the presence of multiple cores (there are 2-core models, 3 and on 4 cores) allows you to work with multiple threads simultaneously, which has a positive effect on performance.

Clock Speed

The number of cycles per second that the processor produces in its normal operating mode. A clock is a single electrical impulse used to process data and synchronize the processor with the rest of the computer system. Different operations may require fractions of a clock or several clocks, but anyway, the clock frequency is one of the main parameters characterizing the performance and speed of the processor — all other things being equal, a processor with a higher clock frequency will work faster and better cope with significant loads.

Features

The main functions and capabilities implemented in the device.

This category mainly includes the most key functions — namely load balancing (Dual WAN), channel reservation, Link Aggregation, Bluetooth(various versions, including Bluetooth v 5), voice assistant, NAT, MESH modes, bridge, repeater, Beamforming function , firewall (Firewall) and CLI (Telnet). Here is a more detailed description of each of these items:

— Dual WAN. Possibility of simultaneous connection to two external networks. Most often used for simultaneous work with two Internet connections (although other options are possible); at the same time, there are two main modes of operation with such connections — redundancy (Failover / Failback) and balancing (Load Balance). So, in backup mode, the device constantly uses the main channel to connect to the Internet, and in case of failures on this channel, it automatically switches to a fallback option. In balancing mode, both channels are used simultaneously, while the load between them is distributed either automatically (depending on the traff...ic consumption of a particular device) or manually (clearly specified in the settings for specific devices). This allows, for example, to separate the channel for online games from the rest of the connection, minimizing lags and increasing efficiency.

— Link Aggregation. A function that allows you to combine several parallel physical communication channels into one logical one — to increase the speed and reliability of the connection. Simply put, with Link Aggregation, a device can be connected to another device not with one cable, but with two or even more at once. The increase in speed in this case occurs due to the summation of the throughput of all physical channels; however, the total speed may be less than the sum of the speeds — on the other hand, combining several relatively slow connectors is often cheaper than using equipment with a more advanced single interface. And the increase in reliability is carried out, firstly, by distributing the total load over individual physical channels, and secondly, by means of "hot" redundancy: the failure of one port or cable can reduce the speed, but does not lead to a complete disconnection, and when the channel is restored, the channel is switched on automatically.

— Bluetooth. The device supports Bluetooth wireless technology. The meaning of this function will depend on the format of the equipment operation (see "Device type"). For example, adapters with this capability allow you to supplement your PC not only with Wi-Fi, but also with Bluetooth support — thanks to this, you can get by with one adapter instead of two. And in routers and access points, this feature allows external devices to access the Internet (or local area network) over a Bluetooth connection instead of Wi-Fi. This format of work allows you to unload the Wi-Fi channel and reduce the power consumption of connected devices; this is especially important for smart home components and other IoT devices, some routers/access points expressly state that Bluetooth is intended mainly for such electronics. Other ways of using this technology, more specific, may be envisaged; however, this is rare.

— Voice assistant. Device support for a particular voice assistant. The most common options are (individually or together):
  • Amazon Alexa
  • Google Assistant
The specific functionality of these assistants can be clarified from special sources (especially since it is constantly being optimized and expanded). Here we note that in the case of Wi-Fi equipment, we are usually not talking about an assistant built into the device itself, but about improved compatibility with smartphones and other gadgets that have the corresponding assistant installed. Such functionality can be especially useful given that modern voice assistants are also used to control smart home components. Communication with such control is often carried out just through a home router or other similar equipment, and the support of such equipment for voice assistants greatly simplifies setup and expands the capabilities of the entire system.

— NAT (Network Address Translation). A function that allows Wi-Fi equipment, when working with an external network (for example, the Internet), to replace the IP addresses of all computers and other devices connected to this equipment with one common IP address. In other words, a network with such a router is seen "from the outside" as one device, with one common IP. The most popular use of NAT is to connect several subscribers to the Internet (for example, all computers and gadgets within a home or office) through one provider account. At the same time, the number of such subscribers within the network is limited only by the capabilities of the router and can be freely changed; this will not affect access to the World Wide Web (whereas without using NAT, one would have to organize a separate account for each device). NAT support is a mandatory feature for routers (see "Device type").

— Bridge mode. Possibility of operation of the equipment in the bridge mode. This mode allows you to wirelessly connect individual network segments to each other — for example, to combine two floors if it is difficult to lay a cable between them. However, communication over longer distances is also possible — in some directional access points (see "Device type"), created mainly for just such an application, the range can exceed 20 km. Actually, this mode supports most access points (both directional and conventional), but it is also popular in other types of equipment, in particular, routers.
Note that to work in bridge mode, it is best to use the same type of device — this guarantees high-quality communication in both directions. It is also worth mentioning that in addition to the two-way point-to-point mode, there is also equipment with support for multi-way bridges (“point-to-multipoint”); the availability of such a possibility should be clarified separately.

— Repeater mode. An operating mode in which the equipment only repeats the Wi-Fi signal from another device, playing the role of a repeater. The main function of this function is to expand Wi-Fi networks, providing access where the main device (for example, a router) does not reach. A classic example of repeaters is Wi-Fi amplifiers (see "Device type"), they have this mode by definition; however, it is also found in other types of Wi-Fi equipment. The exception is MESH systems that have similar specifics, but differ in the format of work. See below for more information about this format, but here we note that networks with repeaters are in many ways inferior to MESH in terms of practical capabilities. Firstly, the signals from the main equipment and from the repeater are seen as separate Wi-Fi networks, and when moving between them, subscriber devices must reconnect; this can happen automatically, but disconnections and network changes still cause inconvenience. Secondly, working through a repeater significantly reduces the speed of Wi-Fi. Thirdly, the repeater operates according to a strictly fixed, pre-established routing scheme. On the other hand, access points with a repeater function are much cheaper than MESH nodes, and the mentioned drawbacks are far from always critical.

— MESH mode. Ability to operate the device as a MESH network node. By definition, all MESH systems have this feature, but it can be provided in other types of equipment. A detailed description of networks of this type is given in the paragraph “Device type — MESH system”. Here we will briefly describe their features and the difference between this mode and the repeater mode (see above), which has a largely similar purpose.
MESH technology allows you to create a single wireless network using many separate nodes (access points) connected to each other via Wi-Fi. In this case, the so-called seamless mode of operation is implemented: the entire network is seen as a single whole, switching between access points, if necessary, occurs automatically, in such cases the connection is not broken and the user does not notice the transition to another network node at all. This is one of the key differences from using repeaters. Another difference is dynamic routing: MESH network nodes automatically determine the optimal signal traversal mode. Due to this, as well as due to some other features of this technology, the presence of "intermediaries" on the signal path practically does not affect the communication speed (unlike the same repeaters). The main disadvantage of equipment with this function can be called a relatively high cost.

— Beamforming. A technology that allows you to amplify the Wi-Fi signal in the direction where the receiving device is located (instead of broadcasting this signal in all directions or in a wide sector, as is the case in normal mode). Narrowing the radiation pattern allows you to send more power towards the receiver, thus increasing the range and communication efficiency; while the position of the receiving device is determined automatically, the user does not need to deal with additional settings. And many models of Wi-Fi equipment are capable of amplifying the signal in several directions at once (usually, several antennas are provided for this). At the same time, subscriber devices do not have to support Beamforming — communication improvement is noticeable even with the one-way use of this technology (although not as obvious as with the two-way one).
Also note that the unified Beamforming standards were officially implemented as part of the Wi-Fi 5 specification. However “beamforming” was also used in earlier versions of Wi-Fi, however, different manufacturers used different methods for implementing Beamforming, incompatible with each other. So these days, this feature is almost never found outside of Wi-Fi 5 compatible equipment.

— Firewall. A feature that allows a Wi-Fi device to control traffic passing through it. In fact, the Firewall is a set of software filters: these filters compare data packets with the specified parameters and decide whether or not to pass traffic. In this case, the processing can be carried out according to two rules: “everything that is not expressly prohibited is allowed”, or vice versa, “everything that is not expressly permitted is prohibited”. The main function of a firewall is to protect the network (or individual network segments) from unauthorized access and various attacks. In addition, this function can be used to control user activity — for example, prohibitions on access to certain Internet sites. Note that a firewall can also be implemented at the level of individual devices, but using it on a router allows you to secure the entire network at once.

CLI (Telnet). Ability to control the device via Telnet protocol. This is one of the protocols used today to remotely control network equipment; while Telnet, unlike another popular HTTP standard, does not have a graphical interface and uses only the command line. Such access is used mainly for service purposes — for debugging and changing settings in other text-based protocols (HTTP on web pages, SMTP and POP3 on mail servers, etc.); Telnet requires specialized knowledge.

Safety standards

— WPA. An encryption protocol created as a temporary solution to the most critical vulnerabilities of the WEP described below. It uses a more advanced encryption algorithm, as well as the transmission of passwords in encrypted form. However, the reliability of this standard also turned out to be insufficient, so an improved version, WPA2, was developed.

— WEP. Historically, the first encryption protocol used in wireless networks. It uses encryption from 64-bit to 256-bit, the latter option is considered strong in itself, however, the standard's own vulnerabilities allow a specialist to hack such a communication channel without much difficulty. As a result, WEP is completely obsolete, its support is provided mainly for compatibility with the simplest equipment (especially since it is technically easy to provide this support).

— WPA2. The most popular security standard in modern Wi-Fi equipment. At one time, it became an important update to the original WPA: in particular, the AES CCMP algorithm was introduced into WPA2, which is extremely difficult to crack. Over time, however, some vulnerabilities were identified in this protocol, which led to the development of a more advanced WPA3; however, WPA3 is just beginning to be massively implemented, and in most Wi-Fi devices, WPA2 remains the most advanced standard.
It is worth noting two nuances. First, WPA2 is available in two versions — personal and corporate; in this case, we are talking about pers...onal, corporate options are placed in paragraph "802.1x". Secondly, support for this standard is guaranteed to also be compatible with WEP and original WPA.

WPA3. A fundamental improvement to WPA2, introduced in 2018, addressing weaknesses identified in WPA2 in the 14 years since it went live. This standard introduced four key innovations:
  • Improved security for public networks. Unlike its predecessor, WPA3 encrypts the traffic between the gadget and the router / access point, even if the network is public and does not require a password.
  • Protection against the KRACK vulnerability, which allowed hacking the WPA2 communication channel at the time the connection was established. The SAE algorithm is responsible for this protection — more advanced than the previously used PSK. In particular, when establishing a connection via SAE, both devices are considered equal (in PSK, the receiver and transmitter were clearly defined) — this does not allow an attacker to “wedge” between devices using KRACK methods.
  • Easy Connect feature — simplifies connection to Wi-Fi networks for devices that do not have displays (in particular, smart home components). Each of these devices will have a QR code on the body, and to connect to the network, it will be enough to scan this code using a smartphone / tablet already connected to this network. However this function is not directly related to WPA3, WPA2 is sufficient for its operation; however, mass adoption of Easy Connect should be expected at the same time as WPA3.
  • Improved encryption algorithms for sensitive data, suitable even for government agencies and defense enterprises. However, this feature is relevant mainly for the corporate version of WPA3 — and support for this version is indicated as "802.1x" (see below, in this case we are talking mainly about the personal version of this standard).
In many devices, upgrading from WPA2 to WPA3 can be done in software by installing a new firmware version. However, if support for this protocol is important to you, it is best to choose equipment where such support is initially provided. Also note that the presence of WPA3 is almost guaranteed to also be compatible with WPA2.

— 802.1x. In this case, it implies support for corporate security standards — most often the corresponding versions of the WPA2 protocols, in new devices also WPA3. For example, if the specifications indicate "802.1x" in addition to "WPA3", then this means that this model supports both personal and corporate versions of WPA3. As for the differences between similar versions, one of them is the support for a separate authentication server in corporate protocols. In other words, when using this function, data on accounts and access rights are stored separately from Wi-Fi equipment, on a special secure server, and it is this server that in each case checks the data of the connected equipment and decides whether to allow or deny access.
TP-LINK Archer AX1800 often compared
TP-LINK Archer C80 often compared