United Kingdom
Catalog   /   Photo   /   Binoculars & Telescopes   /   Telescopes

Comparison Celestron NexStar 5 SLT vs Celestron NexStar 5SE

Add to comparison
Celestron NexStar 5 SLT
Celestron NexStar 5SE
Celestron NexStar 5 SLTCelestron NexStar 5SE
Compare prices 3Compare prices 3
TOP sellers
Design
mirror lens /Schmidt-Cassegrain/
mirror lens /Schmidt-Cassegrain/
Mount typealtazimuthaltazimuth
Specs
Lens diameter125 mm125 mm
Focal length1250 mm1250 mm
Max. useful magnification295 x250 x
Max. resolution magnification187 x187 x
Min. magnification18 x18 x
Aperture1/101/10
Penetrating power13 зв.вел13 зв.вел
Resolution (Dawes)0.93 arc.sec0.91 arc.sec
Resolution (Rayleigh)1.12 arc.sec
Lens shielding (by diameter)40 %
Lens shielding (by area)17 %
More features
Finderred dotred dot
Focuserrackrack
Eyepieces25 mm (50x)
Eyepiece bore diameter1.25 "1.25 "
Mirrorsphericalspherical
Diagonal mirror
Electronic control
Auto-guidance
Autotracking
General
Tube length33 cm
Total weight12.2 kg12.7 kg
Added to E-Catalogoctober 2019march 2015

Max. useful magnification

The highest useful magnification that the telescope can provide.

The actual magnification of the telescope depends on the focal lengths of the objective (see above) and the eyepiece. Dividing the first by the second, we get the degree of magnification: for example, a system with a 1000 mm objective and a 5 mm eyepiece will give 1000/5 = 200x (in the absence of other elements that affect the magnification, such as a Barlow lens — see below). Thus, by installing different eyepieces in the telescope, you can change the degree of its magnification. However, increasing the magnification beyond a certain limit simply does not make sense: although the apparent size of objects will increase, their detail will not improve, and instead of a small and clear image, the observer will see a large, but blurry one. The maximum useful magnification is precisely the limit above which the telescope simply cannot provide normal image quality. It is believed that, according to the laws of optics, this indicator cannot be more than the diameter of the lens in millimetres, multiplied by two: for example, for a model with an entrance lens of 120 mm, the maximum useful magnification will be 120x2 = 240x.

Note that working at a given degree of multiplicity does not mean the maximum quality and clarity of the image, but in some cases it can be very convenient; see “Maximum resolution magnification"

Resolution (Dawes)

The resolution of the telescope, determined according to the Dawes criterion. This indicator is also called the Dawes limit. (There is also a reading of "Daves", but it is not correct).

Resolution in this case is an indicator that characterizes the ability of a telescope to distinguish individual light sources located at a close distance, in other words, the ability to see them as separate objects. This indicator is measured in arc seconds (1 '' is 1/3600 of a degree). At distances smaller than the resolution, these sources (for example, double stars) will merge into a continuous spot. Thus, the lower the numbers in this paragraph, the higher the resolution, the better the telescope is suitable for looking at closely spaced objects. However, note that in this case we are not talking about the ability to see objects completely separate from each other, but only about the ability to identify two light sources in an elongated light spot that have merged (for the observer) into one. In order for an observer to see two separate sources, the distance between them must be approximately twice the claimed resolution.

According to the Dawes criterion, the resolution directly depends on the diameter of the telescope lens (see above): the larger the aperture, the smaller the angle between separately visible objects can be and the higher the resolution. In general, this indicator is similar to the Rayleigh criterion (see "Resolution (Rayleigh)"), however, i...t was derived experimentally, and not theoretically. Therefore, on the one hand, the Dawes limit more accurately describes the practical capabilities of the telescope, on the other hand, the correspondence to these capabilities largely depends on the subjective characteristics of the observer. Simply put, a person without experience in observing double objects, or having vision problems, may simply “not recognize” two light sources in an elongated spot if they are located at a distance comparable to the Dawes limit. For more on the difference between the criteria, see "Resolution (Rayleigh)".

Resolution (Rayleigh)

The resolution of the telescope, determined according to the Rayleigh criterion.

Resolution in this case is an indicator that characterizes the ability of a telescope to distinguish individual light sources located at a close distance, in other words, the ability to see them as separate objects. This indicator is measured in arc seconds (1 '' is 1/3600 of a degree). At distances smaller than the resolution, these sources (for example, double stars) will merge into a continuous spot. Thus, the lower the numbers in this paragraph, the higher the resolution, the better the telescope is suitable for looking at closely spaced objects. However, note that in this case we are not talking about the ability to see objects completely separate from each other, but only about the ability to identify two light sources in an elongated light spot that have merged (for the observer) into one. In order for an observer to see two separate sources, the distance between them must be approximately twice the claimed resolution.

The Rayleigh criterion is a theoretical value and is calculated using rather complex formulas that take into account, in addition to the diameter of the telescope lens (see above), the wavelength of the observed light, the distance between objects and to the observer, etc. Separately visible, according to this method, are objects located at a greater distance from each other than for the Dawes limit described above; therefore, for the same tel...escope, the Rayleigh resolution will be lower than that of Dawes (and the numbers indicated in this paragraph are correspondingly larger). On the other hand, this indicator depends less on the personal characteristics of the user: even inexperienced observers can distinguish objects at a distance corresponding to the Rayleigh criterion.

Lens shielding (by diameter)

The diameter of the space in the field of view of the telescope, closed by any structural element.

Shielding is found exclusively in models with mirrors (reflectors and mirror-lens, see "Design"): the features of their device are such that any auxiliary element (for example, a mirror that directs light into the eyepiece) is certainly located in the path of light entering the lens and covers part of it. Diameter shielding is indicated as a percentage of the telescope lens size (see above): d/D*100%, where d is the shield diameter, D is the lens diameter. This indicator is also called "linear shielding factor".

A foreign object in the field of view can interfere with observation — for example, in the form of a dark spot when pointing the telescope exactly at the light source. However, a much more serious drawback is the noticeable decrease in contrast associated with the diffraction of light around the screen, and, accordingly, the deterioration of image quality. The linear shielding factor is the main indicator of how much the screen affects the quality of the “picture”: values up to 25% are considered good, up to 30% acceptable, up to 40% tolerable, and shielding more than 40% in diameter leads to serious distortion.

Lens shielding (by area)

The area of space in the field of view of the telescope, closed by some structural element.

Shielding is found exclusively in models with mirrors (reflectors and mirror-lens, see "Design"): the features of their device are such that any auxiliary element (for example, a diagonal mirror, see below) is certainly located in the path of light entering the lens and covers part of it. A foreign object in the field of view can interfere with observation — for example, in the form of a dark spot when pointing the telescope exactly at the light source. However, a much more serious drawback is the noticeable decrease in contrast associated with the diffraction of light around the screen, and, accordingly, the deterioration of image quality. At the same time, the larger the screen, the stronger the impact on the quality of the “picture”.

Area shielding is indicated as a percentage of the total lens area: s/S*100, where s is the screen area, S is the lens area. This parameter is used in fact much less frequently than the screening by diameter described above, because the dependence of image quality on the screen area is described by more complex formulas, and the area itself is more difficult to determine. Also note that some manufacturers or sellers may use area screening data for marketing purposes. For example, for a telescope with 30% shielding in diameter, the shielding in area will be only 9%; the second digit creates a deceptive impression of a small screen...size, while in fact it is quite large and already noticeably affects the contrast and image quality.

Eyepieces

This item indicates the eyepieces included in the standard scope of delivery of the telescope, or rather, the focal lengths of these eyepieces.

Having these data and knowing the focal length of the telescope (see above), it is possible to determine the magnifications that the device can produce out of the box. For a telescope without Barlow lenses (see below) and other additional elements of a similar purpose, the magnification will be equal to the focal length of the objective divided by the focal length of the eyepiece. For example, a 1000 mm optic equipped with 5 and 10 mm "eyes" will be able to give magnifications of 1000/5=200x and 1000/10=100x.

In the absence of a suitable eyepiece in the kit, it can usually be purchased separately.

Total weight

The total weight of the telescope assembly includes the mount and tripod.

Light weight is convenient primarily for "marching" use and frequent movements from place to place. However, the downside of this is modest performance, high cost, and sometimes both. In addition, a lighter stand smooths out shocks and vibrations worse, which may be important in some situations (for example, if the device is installed near a railway where freight trains often pass).
Celestron NexStar 5SE often compared