United Kingdom
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   NVDs and Thermal Imagers

Comparison ThermTec CYCLOPS 350 vs Hikmicro Falcon FH35

Add to comparison
ThermTec CYCLOPS 350
Hikmicro Falcon FH35
ThermTec CYCLOPS 350Hikmicro Falcon FH35
Outdated Product
from £1,798.07 
Outdated Product
TOP sellers
Main
Connection to a mobile application via Wi-Fi, USB type C (CVBS support), calculation of distance to an object, possibility of installation on a tripod. Built-in GPS receiver.
Connection to a mobile application via Wi-Fi, USB type C (CVBS support), calculation of the distance to the object, the ability to install on a tripod.
Typethermal imagerthermal imager
Form factormonocularmonocular
Detection range2500 m1800 m
Optical specs
Optical magnification4.8 x3.03 x
Digital magnification6 x8 x
Focal length50 mm35 mm
Receiver resolution384x288 px384x288 px
Refresh rate50 Hz50 Hz
Field of view at 100 m13.2 m
Angular field of view5.3 °7.53 °
Min. focus distance3.5 m
Offset of the exit pupil40 mm
Diopter adjustment
More features
More features
video output /USB, Wi-Fi, Wi-Fi hotspot/
built-in video recorder
switching monitoring modes
dust-, waterproof /IP67/
shockproof /1 m/
ergonomic eyecups
video output /USB-CVBS, Wi-Fi hotspot/
built-in video recorder
switching monitoring modes
dust-, waterproof /IP67/
shockproof
 
General
Power sourcebuilt-in lithium battery18650
Continuous operating time12 h7 h
Operating temperature range-20 °C ~ +55 °С-30 °C ~ +55 °С
Dimensions190x67x61 mm190x58x65 mm
Weight550 g505 g
Added to E-Catalognovember 2023april 2023

Detection range

The greatest distance at which a night vision device is capable of detecting individual objects.

The methods by which manufacturers determine this parameter may vary in detail, but the general principle is the same. Usually, the distance is indicated at which, with an illumination of 0.05 lux (a quarter of the moon) and a medium-contrast background, a rather large object can be seen — for example, a human figure with a height of about 170 cm is most often taken. of this object, but only to notice the very fact of its presence. Simply put, a detection range of, say, 200 m means that “something that looks like a person” can be seen in such a device at a distance of 200 m, but individual parts (head, hands) cannot be disassembled.

It is also worth noting that in fact this parameter is highly dependent on the characteristics of the situation. For example, a dark object on a very light background will be visible further, and on a dark one it may not be noticeable even up close; a similar phenomenon is observed for thermal imagers (see "Type"), only regarding the difference in temperature, and not in colours.

Optical magnification

The degree of image magnification that a night vision device is able to provide without digital image processing, solely due to the optical system. Such an increase is considered to be preferable to digital, because. it does not impair the clarity of the visible image; and for models based on image intensifier tubes (see "How it works"), this is generally the only available option.

Theoretically, the higher the magnification, the greater the detection range (see above), since a powerful increase allows you to see smaller objects. However, it does not always make sense to chase the maximum performance. The fact is that with increasing magnification, the angular field of view decreases and the minimum focus distance increases (see both below), which can create problems at close range. It is also worth noting that a high degree of magnification adversely affects the luminosity of the entire system — as a result, the actual detection range in complete darkness may be higher for a device with a lower magnification, because. it "catches" more light. Yes, and this parameter affects the cost accordingly.

Note that night vision devices, unlike classical binoculars and monoculars, most often have a fixed magnification. Models with the possibility of smooth adjustment are almost never found, and the only option is to use additional nozzles (see "Form factor").

Now on the market are night vision devices with the following optical zoom: 1x, 2 – 3x, 3.1 – 4x, > 4x

Digital magnification

The maximum magnification that a night vision device can achieve through digital image processing.

This function is available only in thermal imagers and some digital models of classic night vision devices (see "How it works"). In general terms, it can be described as follows: the device electronics takes part of the image from the NVD receiver and “stretches” it to the entire frame visible to the user, due to which objects in the field of view look larger. At the same time, this procedure reduces the clarity of the visible image. Therefore, models with digital zoom are quite rare, and even in such cases it plays an auxiliary role and has a very limited magnification — usually less than 2x.

Focal length

The focal length of a night vision device. This term means such a distance from the optical centre of the lens to the photocathode of the image intensifier tube or the matrix of a digital device(see "Operation principle"), at which a clear image is obtained on the photocathode/matrix.

In general, long focal lengths are characteristic of optical systems with a high degree of optical magnification (see above). However, in the case of night vision devices, this dependence is not rigid — it is simply easier to ensure a high magnification with long-focus optics. In fact, this means that models with the same focal length can differ markedly in magnification. But what this indicator directly affects is light transmission: other things being equal, longer optical systems transmit less light, which negatively affects the capabilities of the device. This is also true for thermal imagers (see "Type"), because their working infrared range in this case also obeys the general laws of optics.

Field of view at 100 m

The size of the area visible in the night vision device from a distance of 100 m — in other words, the largest distance between two points at which they can be seen simultaneously from this distance. It is also called "linear field of view". Along with the angular field of view (see below), this parameter characterizes the space covered by the optics; at the same time, it more clearly describes the capabilities of a particular model than data on viewing angles.

Angular field of view

The angle of view provided by a night vision device — that is, the angle between the lines connecting the observer's eye with the two extreme points of visible space. Wide viewing angles allow you to cover a large area, but the magnification factor (see above) is low; in turn, increasing the magnification leads to a decrease in the field of view.

Min. focus distance

The smallest distance to the observed object, at which it will be clearly visible through the night vision device. For normal use of night vision devices, it is necessary that this distance does not exceed the minimum expected distance to the objects in question; thus, it must be borne in mind that the higher the magnification factor (see above), the greater the focus distance, usually.

Offset of the exit pupil

The offset is the distance between the eyepiece lens and the exit pupil of an optical instrument (see "Exit Pupil Diameter"). Optimum image quality is achieved when the exit pupil is projected directly into the observer's eye; so from a practical point of view, offset is the distance from the eye to the eyepiece lens that provides the best visibility and does not darken the edges (vignetting). A large offset is especially important if the night vision device is supposed to be used simultaneously with glasses — after all, in such cases it is not possible to bring the eyepiece close to the eye. It is also relevant for devices that can be installed on a weapon: the greater the distance to the eye, the less likely it is to get injured due to recoil.

More features

Video output. The presence in the NVD design of an output that allows you to broadcast an image from the device to an external device — for example, a laptop. Thus, you can view the "picture" on a large display and record video even if the night vision device does not have its own video recorder (see below); and if it is available, you can broadcast not only the image in real time, but also the captured materials. The specific video output interface may vary, but most often the signal is transmitted in analogue format.

Built-in video recorder. The presence of its own video recorder in the design of night vision devices. This allows you to use the device as a video camera, capturing everything that falls into the field of view on video; at the same time, such recording does not require additional equipment, in contrast to working with the video output described above. Video, usually, is stored on a memory card, and in many models it is possible to view the recording directly on the device itself.

Switching observation modes. The ability to switch observation modes means changing the colour features in the “picture” visible to the user. So, thermal imagers (see "Type") with this function support at least two classic modes "white hot" (the warmer the object, the brighter it is) and "black hot" (the warmer, the darker); in addition, additional format...s can be provided, such as highlighting especially warm objects in red. In classic night vision devices, switching modes usually involves changing the colour tone of the visible image — for example, from classic green to red or black and white. And additional features may include, for example, a high contrast mode.

— Filling with gas. This feature implies the presence in the body of a filler in the form of an inert gas — for example, nitrogen — containing a minimum of water vapor. Such an environment does not oxidize the parts in contact with it, and the “dryness” of the filler also prevents fogging of the optics from the inside during temperature changes. Note that a kind of “side effect” of filling with gas is dust and water protection (see below), since the cases of such devices, by definition, must be airtight.

— Dust-, water protection. The presence in the design of night vision protection against dust and moisture, which prevents the ingress of contaminants on sensitive components. This feature is almost mandatory if you plan to actively use the device in the open air — for example, hunting. Note that the level of security can be different, and a high degree of protection usually means a high price. Therefore, when choosing, it makes sense to clarify the parameters claimed for each specific model and correlate them with your real needs.

— Impact protection. This function involves the use of various means — strong elastic body materials, shock absorption systems, etc. — which prevent damage to the sensitive components of the device during shock and shock. The degree and features of shock protection can vary markedly: usually, such models can withstand drops of at least 1.5 m, but in some cases this figure may be more. Note that for installation on firearms, special protection against recoil is required, which not all shock-resistant devices have.

— Angled eyecups. The presence of beveled eyecups (or one eyecup, in the case of monoculars — see "Type") in the design of night vision devices. The elongated part of the eyecup when working with the device is located on the outside of the eye, almost on the temple; due to this, it provides additional protection for the eye — primarily from extraneous "flare" that interferes with normal viewing of the image in the eyepiece. At the same time, such models do not go well with glasses: at best, the eyecup will have to be turned up, negating all its advantages, and in some devices this is not even possible.
Hikmicro Falcon FH35 often compared