Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Westen Pulsar D 24 24 kW
230 V
vs Viessmann Vitopend 100-WH1D261 24 kW 24 kW
230 V

Add to comparison
Westen Pulsar D 24 24 kW 230 V
Viessmann Vitopend 100-WH1D261 24 kW 24 kW 230 V
Westen Pulsar D 24 24 kW
230 V
Viessmann Vitopend 100-WH1D261 24 kW 24 kW
230 V
from $479.88 up to $643.32
Outdated Product
from $679.60 up to $740.64
Outdated Product
TOP sellers
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)single-circuit (heating only)
Heating area180 m²180 m²
Technical specs
Heat output24 kW24 kW
Min. heat output10.6 kW
Power supply230 V230 V
Power consumption80 W75 W
Coolant min. T30 °С
Coolant max. T85 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure8 bar
Consumer specs
DHW min. T35 °С30 °С
DHW max. T60 °С57 °С
Performance (ΔT=25°C)13.7 L/min11.5 L/min
Performance (ΔT ~30 °C)9.8 L/min
"Summer" mode
Circulation pump
Control busOpenTherm
Boiler specs
Efficiency91.2 %90 %
Combustion chamberopen (atmospheric)open (atmospheric)
Flue diameter120 mm60 mm
Inlet gas pressure20 mbar13 mbar
Max. gas consumption2.78 m³/h2.83 m³/h
Expansion vessel capacity6 L6 L
Expansion vessel pressure0.5 bar0.8 bar
Heat exchangercopper
Connections
Mains water intake1/2"1/2"
DHW flow1/2"1/2"
Gas supply3/4"3/4"
Central heating flow3/4"
Central heating return3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
 
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
power outage
 
frost protection
More specs
Dimensions (HxWxD)730x400x299 mm725x400x340 mm
Weight29 kg31 kg
Added to E-Catalogmarch 2012august 2010

Type

Depending on the set of functions, boilers are divided into single-circuit and dual-circuit.

- Single-circuit boilers are equipped with one heat exchanger, in which the heat from fuel combustion is transferred to the heat medium of the heating system. The only function of such boilers is space heating. It is technically possible to use single-circuit boilers to provide hot water, but this requires an additional tank (the so-called indirect water heater).

- In dual-circuit boilers, the primary heat exchanger is supplemented by a secondary one. Due to this, such a boiler, in addition to heating the room, also provides a hot water supply. In this case, both running water and water accumulated in a special tank(see Built-in water heater tank) can be used.

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

DHW circuit max. pressure

The maximum pressure in the hot water circuit (DHW) at which it can operate for a long time without failures and damage. See "Heating circuit maximum pressure".

DHW min. T

The minimum temperature of domestic hot water (DHW) supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). At the same time, in some boilers, the minimum heating temperature can be only 10 °C or even 5 °C. A similar mode of operation is used to protect pipes from freezing during the cold season: the circulation of water with a positive temperature prevents the formation of ice inside and damage to the circuits.

It is also worth keeping in mind that when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

DHW max. T

The maximum temperature of domestic hot water supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). Accordingly, even in the most modest models, this figure is about 45 °C, in the vast majority of modern boilers, it is not lower than 50 °C, and in some models, it can even exceed 90 °C.

Also when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

Performance (ΔT=25°C)

The performance of a dual-circuit boiler in the DHW supply mode when the water is heated by 25 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain options ΔT — namely 25 °C, 30 °C and/or 50 °C. And it’s worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the ΔT=25 °C mode and produce at least warm water at 40 °C, the initial temperature of cold water must be at least 15 °C (15+25=40 °C). It is a rather high value — for example, in a centralized water supply system, cold water...reaches 15 °C, except in summer, when the water pipes warm up noticeably; the same applies to water supplied from wells. So this performance is a very conditional value. The boiler does not work so often with a temperature difference of 25 °C. Nevertheless, the data for ΔT=25°C is still often given in the specifications — including for advertising purposes since it is in this mode that the performance figures are the highest. In addition, this information may be useful if the boiler is used as a pre-heater, and heating to operating temperature is provided by another device, such as an electric boiler or instantaneous water heater.
Westen Pulsar D 24 often compared
Viessmann Vitopend 100-WH1D261 24 kW often compared