United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Asus ROG Zephyrus M16 2023 GU604VI [GU604VI-M16.I94070] vs Asus ROG Zephyrus M16 2023 GU604VY [GU604VY-NM037W]

Add to comparison
Asus ROG Zephyrus M16 (2023) GU604VI (GU604VI-M16.I94070)
Asus ROG Zephyrus M16 (2023) GU604VY (GU604VY-NM037W)
Asus ROG Zephyrus M16 2023 GU604VI [GU604VI-M16.I94070]Asus ROG Zephyrus M16 2023 GU604VY [GU604VY-NM037W]
Outdated ProductOutdated Product
TOP sellers
Main
The laptop's display is powered by the Nebula HDR algorithm, a specially designed local dimming mechanism that produces an expressive picture with incomparable depth.
The laptop's display is powered by the Nebula HDR algorithm, a specially designed local dimming mechanism that produces an expressive picture with incomparable depth. AniMeMatrix programmable backlight on laptop lid.
Typelaptoplaptop
Screen
Screen size16 "16 "
Screen typeIPSminiLED
Surface treatmentanti-glareanti-glare
Screen resolution2560x1600 (16:10)2560x1600 (16:10)
Response time3 ms3 ms
Refresh rate240 Hz240 Hz
Brightness1100 nit
Contrast100000 :1
Colour gamut (DCI P3)100 %100 %
Pantone certification
HDRHDR10, Dolby Vision HDR10, Dolby Vision
VESA DisplayHDR CertificationDisplayHDR 1000
NVIDIA G-Sync
CPU
SeriesCore i9Core i9
Model13900H13900H
Code nameRaptor Lake (13th Gen)Raptor Lake (13th Gen)
Processor cores1414
Total threads20 threads20 threads
CPU speed1.9 GHz1.9 GHz
TurboBoost / TurboCore frequency5.4 GHz5.4 GHz
CPU TDP45 W45 W
Passmark CPU Mark32121 score(s)32121 score(s)
RAM
RAM16 GB32 GB
Max. RAM64 GB64 GB
RAM typeDDR5DDR5
RAM speed4800 MHz4800 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 4070RTX 4090
Video memory8 GB16 GB
Memory typeGDDR6GDDR6
GPU TDP140 W145 W
Advanced Optimus
VR
3DMark0655615 score(s)67702 score(s)
3DMark Vantage P100062 score(s)113387 score(s)
Storage
Drive typeSSD M.2SSD M.2
Drive capacity1024 GB2048 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 4.0 4x
NVMe
M.2 drive size22x80 mm22x80 mm
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 4.0 4xPCI-E 4.0 4x
Additional M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.1
Card reader
 /microSD/
 /microSD/
USB 3.2 gen222
USB C 3.2 gen21 pc1 pc
USB411
Thunderbolt interfacev4 1 pcsv4 1 pcs
Alternate Mode
Monitors connection33
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
Bluetoothv 5.2v 5.2
Multimedia
Webcam1920x1080 (Full HD)1920x1080 (Full HD)
Camera shutter
Speakers64
Audio decodersDolby AtmosDolby Atmos
Security
face scanner (FaceID)
kensington / Noble lock
TPM
face scanner (FaceID)
kensington / Noble lock
TPM
Keyboard
BacklightRGBRGB
Lighthing syncAsus Aura SyncAsus Aura Sync
Key designisland typeisland type
Num block
Additional keys44
Input devicetouchpadtouchpad
Battery
Battery capacity5800 mAh5800 mAh
Battery capacity90 W*h90 W*h
Battery voltage15.52 V15.52 V
Operating time4.5 h4.5 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time50% in 30 min50% in 30 min
Power supply Included280 W280 W
General
Preinstalled OSWindows 11 HomeWindows 11 Home
Materialaluminiumaluminium
Dimensions (WxDxT)355x246x23 mm355x246x22 mm
Weight2.3 kg2.1 kg
Color
Added to E-Catalogjuly 2023april 2023

Screen type

The technology by which the matrix of the laptop is made.

Matrices of the TN+film, IPS and *VA types are most widely used nowadays; less common are screens like OLED, AMOLED, QLED, miniLED, as well as more specific solutions like LTPS or IGZO. Here is a more detailed description of all these options:

— TN-film. The oldest, simplest and most inexpensive technology currently in use. The key advantages of this type of display are low cost and excellent response time. On the other hand, such matrices are not of high image quality: brightness, colour fidelity and viewing angles of TN-film screens are at an average level. These indicators are quite enough for working with documents, web surfing, most games, etc.; however, for more serious tasks that require a high-quality and reliable picture (for example, design or photo / video colour correction), such screens are practically unsuitable. Thus, TN-film matrices are relatively rare nowadays, mainly among low-cost laptops; more advanced devices are equipped with better screens, most often IPS.

— IPS (In-Plane Switching). The most popular type of matrix for laptops in the middle and top price range; however, it is increasingly common in low-cost models, and for trans...formers and 2-in-1 devices (see "Type") it is almost a standard option. Screens of this type are noticeably superior to TN-film in terms of the quality of the “picture”: they provide a bright, reliable and rich image that hardly changes when the viewing angle changes. In addition, this technology allows to achieve extensive colour gamuts in various special standards (see below) and is suitable for creating displays with advanced features such as HDR support or Pantone / CalMAN certification (also see below). Initially, IPS matrices were expensive and had a slow response time; however, nowadays, various modifications of this technology are used, in which these shortcomings are fully or partially compensated. At the same time, different modifications may differ in practical characteristics: for example, some are created based on the maximum reliability of the picture, others differ in affordable cost, etc. So it's ok to clarify the actual characteristics of the IPS screen before buying — especially if you plan to use a laptop for specific applications where image quality is critical.

— *V.A. Various modifications of matrices of the "Vertical Alignment" type: MVA, PVA, Super PVA, ASVA, etc. The differences between these technologies are mainly in the name and the manufacturer. Initially, matrices of this type were developed as a compromise between IPS (high-quality, but expensive and slow) and TN-film (fast, inexpensive, but modest in image quality). As a result, *VA screens turned out to be more affordable than IPS and more advanced than TN-film — they have good colour reproduction, deep blacks and wide viewing angles. At the same time, it is worth noting that the colour balance of the picture on such a display changes somewhat when the viewing angle changes. This makes it difficult to use *VA matrices in professional colour work. In general, this option is designed mainly for those who do not need perfect colour accuracy and at the same time want to see a bright and colorful image.

— OLED. Matrices based on the so-called organic light-emitting diodes. The key feature of such displays is that in them each pixel is a source of light in itself (unlike classic LCD screens, in which the backlight is made separately). This design principle, combined with a number of other solutions, provides excellent brightness, contrast and colour reproduction, rich blacks, the widest possible viewing angles and a small thickness of the screens themselves. On the other hand, laptop OLED matrices for the most part turn out to be quite expensive and “gluttonous” in terms of energy consumption, and they wear out unevenly: the more often and brighter a pixel glows, the faster it loses its working properties (however, this phenomenon becomes noticeable only after several years of intensive use). In addition, for a number of reasons, such screens are considered poorly suited for gaming applications. In light of all this, sensors of this type are rare these days — mostly in individual high-end laptops designed for professional colour work and with appropriate features such as HDR support, wide colour gamut and/or Pantone / CalMAN certification (see below).

— AMOLED. A kind of matrices on organic light-emitting diodes, created by Samsung (however, it is also used by other manufacturers). In terms of its main features, it is similar to other types of OLED matrices (see above): on the one hand, it allows you to achieve excellent image quality, on the other hand, it is expensive and wears out unevenly. At the same time, AMOLED screens have even more advanced colour performance combined with better power optimization. And the low prevalence of this technology is mainly due to the fact that it was originally created for smartphones and only recently began to be used in laptops (since 2020).

— MiniLED. Screen backlight system on a substrate of miniature LEDs with a size of about 100-200 microns (µm). On the same display plane, it was possible to increase the number of LEDs several times, and their array is placed directly behind the matrix itself. The main advantage of miniLED technology can be called a large number of local dimming zones, which in total gives improved brightness, contrast and more saturated colors with deep blacks. MiniLED screens unlock the potential of High Dynamic Range (HDR) technology, suitable for graphic designers and digital content creators.

— QLED. Matrices on "quantum dots" with a redesigned LED backlight system. In particular, it provides the replacement of multilayer colour filters with a special thin-film coating of nanoparticles. Instead of traditional white LEDs, QLED panels use blue ones. As a result, a set of design innovations makes it possible to achieve a higher brightness threshold, colour saturation, improve the quality of colour reproduction in general, while reducing the thickness of the screen and reducing power consumption. The reverse side of the QLED-matrices coin is an expensive cost.

— PLS. A type of matrix developed as an alternative to the IPS described above and, according to some sources, is one of its modifications. Such matrices are also characterized by high colour rendering quality and good brightness; in addition, the advantages of PLS include good suitability for high-resolution screens (due to high pixel density), as well as lower cost than most IPS modifications, and low power consumption. At the same time, the response speed of such screens is not very high.

— LTPS. An advanced type of TFT-matrix, created on the basis of the so-called. low temperature polycrystalline silicon. Such matrices have high colour quality, and are also well suited for screens with high pixel density — in other words, they can be used to create small displays with very high resolution. Another advantage is that part of the control electronics can be built directly into the matrix, reducing the overall thickness of the screen. On the other hand, LTPS matrices are difficult to manufacture and expensive, and therefore are found mainly in premium laptops.

— IGZO. An LCD technology that uses a semiconductor material based on indium, gallium, and zinc oxides (as opposed to more traditional amorphous silicon). This technology provides fast response time, low power consumption and very high colour quality; it also achieves high pixel densities, making it well-suited for ultra-high resolution screens. However, while such displays in laptops are extremely rare. This is explained both by the high cost and by the fact that rather rare metals are used in the production of IGZO matrices, which makes large-scale production difficult.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 cd / m2 and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 cd / m2. And in the most advanced models, this parameter can be 350 – 400 cd / m2 and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

VESA DisplayHDR Certification

VESA DisplayHDR certified, which corresponds to a screen that supports HDR technology.

See above for more details on this technology. And VESA DisplayHDR is an open standard that defines the overall image quality on an HDR screen by a number of parameters — brightness, colour depth, etc. Based on the test results, a screen that meets the required parameters is assigned a certain certificate with a numerical designation. So, the minimum level is DisplayHDR 400, the maximum is DisplayHDR 1400 (although in laptops, as of the end of 2020, there are no screens higher than DisplayHDR 1000). The number in such a designation is indicated by the brightness that the screen must provide: for example, DisplayHDR 400 must produce at least 400 cd / m2. Accordingly, a higher number denotes more extensive display capabilities and more advanced HDR performance.

A separate case is the DisplayHDR True Black certifications. This standard was specifically created for so-called emissive displays such as OLED (see "Matrix type"), which are capable of displaying very deep blacks. The native brightness of such displays is not very high — in particular, the current DisplayHDR 400 True Black and DisplayHDR 500 True Black provide a total screen brightness of only 250 and 300 cd / m2, respectively (against 400 and 500 cd / m2 in the original standards, without the addition " True Black"). However, in terms of black transmission efficiency, such di...splays surpass conventional HDR counterparts by orders of magnitude, which gives a noticeable increase in image quality — in particular, the mentioned True Black standards with indexes 400 and 500 win even when compared with conventional DisplayHDR 1000. However, it should be taken into account that that this advantage is most noticeable in relatively dim ambient light.

RAM

The amount of random access memory (RAM or RAM) actually installed in the laptop.

The amount of RAM is one of the most important indicators characterizing the overall flow Rate of the system. The more RAM installed in a laptop, the better it will cope with “heavy” resource-intensive programs, and the more tasks can be performed on it simultaneously without “brakes” and failures.

Today , 4 GB of RAM is considered the minimum required. A capacity of 8 GB is usually enough for comfortable household use and simple games, 16 GB and 32 GB are enough for running resource-intensive applications and confidently launching modern games. And in advanced gaming and professional laptops there are also larger amounts of RAM - 64 GB or even more.

Note that many laptop models allow you to increase the available amount of RAM; For more details, see “Maximum installed volume”.

Graphics card model

GeForce graphics cards from NVIDIA: RTX represented by RTX 2060, RTX 2060 Max-Q, RTX 2070, RTX 2070 Max-Q, RTX 2070 Super, RTX 2070 Super Max-Q, RTX 2080, RTX 2080 Max-Q, RTX 2080 Super, RTX 2080 Super Max-Q, RTX 3050, RTX 3050 Ti, RTX 3060, RTX 3060 Max-Q, RTX 3070, RTX 3070 Max-Q, RTX 3070 Ti, RTX 3080, RTX 3080 Ti, RTX 4050, RTX 4060, R TX 4070, RTX 4080, RTX 4090 ; MX1xx represented by MX110, MX130 and MX150, MX2xx(MX230 and MX250), MX3xx(MX330 and MX350), MX450, GTX which represent GTX 1050, GTX 1060, GTX 1060 Max-Q, GTX 1070, GTX 1070 Max-Q, GTX 1080, GTX 1080 Max-Q, GTX 1650, GTX 1650 Max-Q, GTX 1650 Ti, GTX 1660 Ti, GTX 1660 Ti Max-Q and. AMD also offers video cards Radeon 520, Radeon 530(535), Radeon 540X, Radeon 610(625, 630), Radeon RX 550 (550X, 560), Radeon RX 640, Radeon RX 5500M, Radeon RX 6800M and Radeon Pro.

Note that all the above models are discrete. Actually, for a configuration with discrete graphics, it is the model of a separate video adapter that is indicated; if it is supplemented by an integrated module, the name of this module can be clarified by the official characteristics of the processor.

It is also worth mentioning that this paragraph does not give the full name of the model, but only its name within the series (the series itself is given separately - see above). However, knowing the series and model, one can easily find detailed information about the graphics card.

Video memory

The amount of native video memory installed in the laptop's graphics card. Only discrete video adapters and their advanced varieties like SLI or Dual Graphics have such memory (see "Video card type").

The more memory, the more powerful the graphics card and the better it can handle complex graphics. Of course, the specific capabilities of the adapter depend on a number of other parameters (primarily the characteristics of the graphics processor); however, the difference in the amount of memory, as a rule, is quite consistent with the difference in the overall level. In terms of specific numbers, solutions with 2 GB are entry-level, 4 GB and 6 GB are intermediate, and 8 GB - to advanced, and 12 GB and 16 GB can be found in top-end gaming laptops and high-end workstations.

GPU TDP

The amount of heat generated by the graphics processing unit (GPU) during normal operation. TDP is expressed in watts. It allows you to evaluate the thermal characteristics of a laptop and determine its potential for working with high graphics loads. The higher the GPU TDP value, the more power the GPU consumes, which may require a more efficient cooling system to avoid overheating and ensure stable operation of the device. Laptops with higher GPU heat dissipation are better suited for gamers or graphics and video production professionals.

3DMark06

The result shown by the laptop's graphics card in 3DMark06.

This test primarily determines how well a graphics card handles intensive workloads, in particular, with detailed 3D graphics. The test result is indicated in points; the more points, the higher the performance of the video adapter. Good 3DMark06 scores are especially important for gaming laptops and advanced workstations. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.
Asus ROG Zephyrus M16 (2023) GU604VI often compared