United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Acer Aspire 7 A715-76G [A715-76G-51C4] vs Acer Aspire 7 A715-51G [A715-51G-51QS]

Add to comparison
Acer Aspire 7 A715-76G (A715-76G-51C4)
Acer Aspire 7 A715-51G (A715-51G-51QS)
Acer Aspire 7 A715-76G [A715-76G-51C4]Acer Aspire 7 A715-51G [A715-51G-51QS]
Expecting restockOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentmattematte
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz144 Hz
Colour gamut (NTSC)45 %
CPU
SeriesCore i5Core i5
Model12450H1240P
Code nameAlder Lake (12th Gen)Alder Lake (12th Gen)
Processor cores8 (4P+4E)12 (4P+8E)
Total threads12 threads16 threads
CPU speed1.5 GHz1.2 GHz
TurboBoost / TurboCore frequency4.4 GHz4.4 GHz
CPU TDP45 W28 W
Passmark CPU Mark17994 score(s)17240 score(s)
SuperPI 1M8.3 sec
RAM
RAM8 GB8 GB
Max. RAM32 GB32 GB
RAM typeDDR4DDR4
RAM speed3200 MHz3200 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 2050RTX 3050 Ti
Video memory4 GB4 GB
Memory typeGDDR6GDDR6
GPU TDP50 W60 W
3DMark0640490 score(s)
3DMark Vantage P46821 score(s)
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 3.0PCI-E 3.0 4x
M.2 connector interfacePCI-E 4.0 4x
M.2 drive size22x80 mm22x80 mm
Additional M.2 connector1
Addittional M.2 connectors interfacePCI-E 3.0 4x
Additional M.2 drive size22x80 mm
Connections
Connection ports
HDMI
v 2.0
HDMI
v 2.1
Card reader
USB 3.2 gen133
USB C 3.2 gen21 pc
USB41
Thunderbolt interfacev4 1 pcsv4 1 pcs
Alternate Mode
Monitors connection22
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.1v 5.0
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Security
fingerprint scanner
kensington / Noble lock
 
fingerprint scanner
kensington / Noble lock
TPM
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity50 W*h50 W*h
Operating time8 h9 h
Powered by USB-C (Power Delivery)
Fast charge
Power supply Included135 W
General
Preinstalled OSDOSEndless OS
Materialaluminium / plasticaluminium
Dimensions (WxDxT)362x237x20 mm362x237x20 mm
Weight2.1 kg2.1 kg
Color
Added to E-Catalognovember 2023january 2023

Refresh rate

The frame rate supported by the laptop screen. In fact, in this case we are talking about the maximum frequency; the actual frame rate may be lower than this value, depending on the content being displayed — but not higher.

Theoretically, the higher the frame rate, the smoother the movement on the screen will look, the less moving objects will be blurred. In fact, the situation is such that even in relatively modest modern laptops, 60 Hz matrices are installed — in general, this is quite enough for the human eye, since a further increase in speed ( 90 Hz and higher) does not significantly improve the visible “picture”. However, in high-end gaming and multimedia models designed for demanding users, higher values — 120 Hz, 144 Hz, 165 Hz and even higher, namely 240 Hz and 300 Hz.

Colour gamut (NTSC)

The colour gamut of the laptop matrix according to the NTSC colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of 72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.

Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

Total threads

The number of threads supported by the laptop processor.

A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

CPU TDP

The amount of heat generated by the processor during normal operation. This parameter determines the requirements for the cooling system necessary for the normal operation of the processor, therefore it is sometimes called TDP - thermal design power, literally “thermal (cooling) system power”. Simply put, if the processor has a heat dissipation of 60 W, it needs a cooling system that can remove at least this amount of heat. Accordingly, the lower the TDP, the lower the requirements for the cooling system.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

SuperPI 1M

The result shown by the laptop processor in the SuperPI 1M test.

The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).
Acer Aspire 7 A715-76G often compared
Acer Aspire 7 A715-51G often compared