United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo IdeaPad Pro 5 16IRH8 [5 16IRH8 83AQ0045RM] vs Lenovo Legion Slim 5 16IRH8 [5 16IRH8 82YA002PUS]

Add to comparison
Lenovo IdeaPad Pro 5 16IRH8 (5 16IRH8 83AQ0045RM)
Lenovo Legion Slim 5 16IRH8 (5 16IRH8 82YA002PUS)
Lenovo IdeaPad Pro 5 16IRH8 [5 16IRH8 83AQ0045RM]Lenovo Legion Slim 5 16IRH8 [5 16IRH8 82YA002PUS]
Expecting restockOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size16 "16 "
Screen typeIPSIPS
Surface treatmentanti-glareanti-glare
Screen resolution2560x1600 (16:10)1920x1200 (16:10)
Refresh rate120 Hz144 Hz
Brightness350 nit300 nit
Contrast1200 :11200 :1
Colour gamut (sRGB)100 %
Colour gamut (NTSC)45 %
TÜV Rheinland certificate
NVIDIA G-Sync
CPU
SeriesCore i5Core i5
Model13500H13500H
Code nameRaptor Lake (13th Gen)Raptor Lake (13th Gen)
Processor cores12 (4P+8E)12 (4P+8E)
Total threads16 threads16 threads
CPU speed1.9 GHz1.9 GHz
TurboBoost / TurboCore frequency4.7 GHz4.7 GHz
CPU TDP45 W45 W
3DMark0614694 score(s)
Passmark CPU Mark23138 score(s)23170 score(s)
SuperPI 1M7.1 sec
RAM
RAM16 GB16 GB
Max. RAM32 GB
RAM typeLPDDR5DDR5
RAM speed5200 MHz5200 MHz
Slotsbuilt-in2
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 3050RTX 4050
Video memory6 GB6 GB
Memory typeGDDR6GDDR6
GPU TDP80 W100 W
Advanced Optimus
VR
3DMark0651372 score(s)
3DMark Vantage P85660 score(s)
Storage
Drive typeSSD M.2SSD M.2
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 4.0 4x
NVMe
M.2 drive size22x42 mm22x80 mm
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 4.0 4xPCI-E 4.0 4x
Additional M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.1
Card reader
 /SD/
 /SD/MMC/
USB 3.2 gen12
USB 3.2 gen22
USB C 3.2 gen21 pc2
USB41
Thunderbolt interfacev4 1 pcs
Alternate Mode
Monitors connection33
LAN (RJ-45)1 Gbps
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
Bluetoothv 5.1v 5.1
Multimedia
Webcam1920x1080 (Full HD)1920x1080 (Full HD)
Camera shutter
Speakers22
Audio decodersDolby Atmos
Security
face scanner (FaceID)
TPM
 
TPM
Keyboard
BacklightwhiteRGB 4 zone
Key designisland typeisland type
Num block
Additional keys4
Input deviceglass touchpadtouchpad
Battery
Battery capacity5182 mAh
Battery capacity75 W*h80 W*h
Battery voltage15.44 V
Operating time14 h8.9 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time15 minutes will provide 3 hours of work50% in 30 min
Power supply Included170 W170 W
General
Preinstalled OSno OSWindows 11 Home
MIL-STD-810 Military Standard
Materialaluminiumaluminium / plastic
Dimensions (WxDxT)356x251x18 mm360x260x22 mm
Weight2 kg2.4 kg
Color
Added to E-Catalognovember 2023july 2023

Screen resolution

The resolution of the screen installed in the laptop — that is, the size of the screen in pixels horizontally and vertically.

Higher resolution, on the one hand, gives a sharper, more detailed image; on the other hand, it increases the cost of the laptop. The latter is connected not only with the cost of the displays themselves, but also with the fact that in order to work effectively at high resolutions, you need the appropriate filling (primarily a graphics card). This is especially true in games; so if you are looking for a laptop with a high-resolution screen that can effectively "run" modern games — you should pay attention not only to the characteristics of the display, but also to other data (the type and parameters of the graphics card, test results, the ability to work with certain games — see everything below). On the other hand, if the device is planned to be used for simple tasks such as working with documents, surfing the Internet and watching videos, you can not pay much attention to the “hardware” parameters: anyway, they are selected so that the laptop is guaranteed to be able to cope with such tasks on full resolution of the "native" screen.

As for specific numbers, the resolution options that are relevant today can be divided into 4 groups: HD (720), Full HD (1080), Quad HD and UltraHD 4K. Here is a mor...e detailed description of them:

— HD (720). This category includes all displays that have a vertical size of less than 1080 pixels. The most popular HD resolution in modern laptops is 1366x768; in devices larger than 15.6 ", 1600x900 is also often found. Other values quite exotic and are rarely used. In general, screens of this standard are now typical mainly for entry-level laptops.

— Full HD (1080). Initially, the Full HD standard provides a frame size of 1920x1080, and it is this resolution that is most often used in laptop screens from this category. However, in addition to this, other resolution options are also included in this format, where the vertical size is at least 1080 pixels, but does not reach 1440 pixels. Examples include 1920x1200 and 2560x1080. In general, Full HD displays provide a good balance between cost, image quality and laptop hardware requirements. Because of this, nowadays they are extremely widespread; matrices of this standard can be found even in low-cost devices, although they are mainly used in more advanced technology.

— Quad HD. A transitional option between the popular Full HD 1080 (see above) and the high-end and expensive UltraHD 4K. The vertical size of such screens starts from 1440 pixels and can reach 2000 pixels. Note that QuadHD resolutions are especially popular in Apple laptops; most often, such devices have 2560x1600 screens, although there are other options.

— Ultra HD 4K. The most advanced standard used in modern laptops. The vertical size of such screens is at least 2160 dots (up to 2400 in some configurations); the classic resolution of a modern UltraHD matrix is 3840x2160, but there are other values. Anyway, a 4K display allows for high image quality, however, it costs accordingly — including due to the corresponding requirements for a graphics adapter; in addition, to work with high resolutions, it can be more convenient to connect an external monitor to the laptop. Thus, such screens are used relatively rarely, and mainly among premium laptops.

Refresh rate

The frame rate supported by the laptop screen. In fact, in this case we are talking about the maximum frequency; the actual frame rate may be lower than this value, depending on the content being displayed — but not higher.

Theoretically, the higher the frame rate, the smoother the movement on the screen will look, the less moving objects will be blurred. In fact, the situation is such that even in relatively modest modern laptops, 60 Hz matrices are installed — in general, this is quite enough for the human eye, since a further increase in speed ( 90 Hz and higher) does not significantly improve the visible “picture”. However, in high-end gaming and multimedia models designed for demanding users, higher values — 120 Hz, 144 Hz, 165 Hz and even higher, namely 240 Hz and 300 Hz.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 cd / m2 and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 cd / m2. And in the most advanced models, this parameter can be 350 – 400 cd / m2 and even more.

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Colour gamut (NTSC)

The colour gamut of the laptop matrix according to the NTSC colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of 72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.

Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.

TÜV Rheinland certificate

Laptop display certification for safe blue light emission levels and panel flicker rates. The presence of a TÜV Rheinland certificate confirms that the screen is comfortable for the eyes.

TÜV Rheinland is a large international concern headquartered in Cologne, Germany, providing a wide range of audit services. The company's specialists have developed and approved a number of tests for the compliance of the screens of mobile devices, monitors and TVs with the required level of eye protection from the harmful effects of display radiation on the user's vision on the other side of the screen. The authoritative opinion of TÜV Rheinland is respected in the tech community. Certificates from this body are issued to successfully tested electronics for the implementation of blue light filtering and screen flicker suppression technologies.

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

SuperPI 1M

The result shown by the laptop processor in the SuperPI 1M test.

The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).