Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison Gigabyte AORUS WATERFORCE 360 vs Gigabyte AORUS WATERFORCE X 360

Add to comparison
Gigabyte AORUS WATERFORCE 360
Gigabyte AORUS WATERFORCE X 360
Gigabyte AORUS WATERFORCE 360Gigabyte AORUS WATERFORCE X 360
from £289.30 
Outdated Product
Compare prices 3
User reviews
0
0
0
1
TOP sellers
Main
Unique 60x60mm circular full colour LCD display, support video playback, special text support. The screen orientation can be rotated 330 degrees.
Unique 60x60mm circular full colour LCD display, support video playback, special text support. The screen orientation can be rotated 330 degrees.
Main specs
Featuresfor CPUfor CPU
Product typeliquid coolingliquid cooling
Fan
Number of fans33
Fan size120 mm120 mm
Bearingslidingsliding
Min. RPM950 rpm800 rpm
Max. RPM2150 rpm2500 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow56.47 CFM60.07 CFM
Static pressure2.77 mm H2O3.14 mm H2O
MTBF74 K hours74 K hours
replaceable
Min noise level17 dB8 dB
Noise level31 dB38 dB
Power source4-pin4-pin
Radiator
Heatsink materialaluminiumaluminium
Plate materialcoppercopper
Socket
AMD AM4
 
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
AMD AM4
AMD AM5
AMD TR4/TRX4
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
Liquid cooling system
Heatsink size360 mm360 mm
Pump size82x82x74 mm82x82x74 mm
Pump power source4-pin4-pin
General
Display
Lighting
Lighting colourARGBARGB
Lighting syncGigabyte RGB FusionGigabyte RGB Fusion
Mount typebilateral (backplate)bilateral (backplate)
Manufacturer's warranty3 years3 years
Dimensions394x119x27 mm394x119x27 mm
Added to E-Catalogdecember 2021june 2021

Min. RPM

The lowest speed at which the cooling fan is capable of operating. Specified only for models with speed control (see below).

The lower the minimum speed (with the same maximum) — the wider the speed control range and the more you can slow down the fan when high performance is not needed (such a slowdown allows you to reduce energy consumption and noise level). On the other hand, an extensive range affects the cost accordingly.

Max. RPM

The highest speed at which the cooling system fan is capable of operating; for models without a speed controller (see below), this item indicates the nominal rotation speed. In the "slowest" modern fans, the maximum speed does not exceed 1000 rpm, in the "fastest" it can be up to 2500 rpm and even more.

Note that this parameter is closely related to the fan diameter (see above): the smaller the diameter, the higher the speed must be to achieve the desired airflow values. In this case, the rotation speed directly affects the level of noise and vibration. Therefore, it is believed that the required volume of air is best provided by large and relatively "slow" fans; and it makes sense to use "fast" small models where compactness is crucial. If we compare the speed of models of the same size, then higher speeds have a positive effect on performance, but increase not only the noise level, but also the price and power consumption.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

Min noise level

The lowest noise level produced by the cooling system during operation.

This parameter is indicated only for those models that have capacity control and can operate at reduced power. Accordingly, the minimum noise level is the noise level in the most “quiet” mode, the volume of work, which this model cannot be less than.

These data will be useful, first of all, to those who are trying to reduce the noise level as much as possible and, as they say, “fight for every decibel”. However, it is worth noting here that in many models the minimum values are about 15 dB, and in the quietest — only 10 – 11 dB. This volume is comparable to the rustling of leaves and is practically lost against the background of ambient noise even in a residential area at night, not to mention louder conditions, and the difference between 11 and 18 dB in this case is not significant for human perception. A comparison table for sound starting from 20 dB is given in the "Noise level" section below.

Noise level

The standard noise level generated by the cooling system during operation. Usually, this paragraph indicates the maximum noise during normal operation, without overloads and other "extreme".

Note that the noise level is indicated in decibels, and this is a non-linear value. So it is easiest to evaluate the actual loudness using comparative tables. Here is a table for values found in modern cooling systems:

20 dB — barely audible sound (quiet whisper of a person at a distance of about 1 m, sound background in an open field outside the city in calm weather);
25 dB — very quiet (normal whisper at a distance of 1 m);
30 dB — quiet (wall clock). It is this noise that, according to sanitary standards, is the maximum allowable for constant sound sources at night (from 23.00 to 07.00). This means that if the computer is planned to sit at night, it is desirable that the volume of the cooling system does not exceed this value.
35 dB — conversation in an undertone, sound background in a quiet library;
40 dB — conversation, relatively quiet, but already in full voice. The maximum permissible noise level for residential premises in the daytime, from 7.00 to 23.00, according to sanitary standards. However, even the noisiest cooling systems usually do not reach this indicator, the maximum for such equipment is about 38 – 39 dB.

Socket

Socket - processor connector - with which the corresponding cooling system is compatible.

Different sockets differ not only in compatibility with a particular CPU, but also in the configuration of the mounting place for the cooling system. So, when purchasing a processor cooling system separately, it is worth making sure that it is compatible with the socket. Nowadays, solutions are mainly produced for the following types of sockets: AMD AM2/AM3/FM1/FM2, AMD AM4, AMD AM5, AMD TR4/TRX4, Intel 775, Intel 1150, Intel 1155/1156, Intel 1366, Intel 2011/2011 v3, Intel 2066, Intel 1151/1151 v2, Intel 1200, Intel 1700.

Display

Remote or built -in information display in the design of the cooling system. The screen is used to display information about temperature, fan speed, voltage, etc. In advanced implementations, the display can be used to control cooling parameters to ensure optimal system performance and stability.