Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison ID-COOLING Frostflow X 240 Lite vs ID-COOLING Frostflow X 240

Add to comparison
ID-COOLING Frostflow X 240 Lite
ID-COOLING Frostflow X 240
ID-COOLING Frostflow X 240 LiteID-COOLING Frostflow X 240
Expecting restockOutdated Product
User reviews
3
0
1
0
TOP sellers
Main specs
Featuresfor CPUfor CPU
Product typeliquid coolingliquid cooling
Max. TDP250 W250 W
Fan
Number of fans22
Fan size120 mm120 mm
Fan thickness25 mm
Bearinghydrodynamichydrodynamic
Min. RPM700 rpm700 rpm
Max. RPM1800 rpm1800 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow76.16 CFM74.5 CFM
Static pressure2.16 mm H2O2.15 mm H2O
Starting voltage7 V
replaceable
Min noise level15 dB18 dB
Noise level35 dB35 dB
Power source4-pin4-pin
Radiator
Heatsink materialaluminiumaluminium
Plate materialcoppercopper
Socket
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
AMD AM4
AMD AM5
Intel 1150
Intel 1155/1156
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Intel 1700 / 1851
Liquid cooling system
Heatsink size240 mm240 mm
Pump size70x70x50 mm72x72x47 mm
Pump rotation speed2100 rpm2100 rpm
Pump MTBF50 K hours50 K hours
Pipe length400 mm400 mm
Pump power source3-pin
General
Mount typebilateral (backplate)bilateral (backplate)
Manufacturer's warranty1 year1 year
Dimensions285x120x30 mm276x120x27 mm
Added to E-Catalogdecember 2023march 2019

Fan thickness

This parameter must be considered in the context of whether the fan will fit into the computer case. Standard case fans are available in the order of 25 mm in thickness. Low-profile coolers with a thickness of about 15 mm are designed for small-sized cases, where saving space is extremely important. Fans of large thickness (30-40 mm) boast high cooling efficiency due to the increased impeller dimensions. However, they are noisier than standard models at the same speed and do not always fit into the case normally, sometimes touching other components.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

Starting voltage

The starting voltage of the fan installed in the cooling system. In fact, this is the smallest value necessary for stable operation of the fan — if the voltage is too low, it simply “will not start”. Note that this parameter is relevant mainly for rather specific tasks — for example, installing a fan in a power supply unit with a direct connection to the PSU, or choosing an external controller to control the rotation speed. When connected through standard power connectors, you can not pay much attention to the starting voltage.

Min noise level

The lowest noise level produced by the cooling system during operation.

This parameter is indicated only for those models that have capacity control and can operate at reduced power. Accordingly, the minimum noise level is the noise level in the most “quiet” mode, the volume of work, which this model cannot be less than.

These data will be useful, first of all, to those who are trying to reduce the noise level as much as possible and, as they say, “fight for every decibel”. However, it is worth noting here that in many models the minimum values are about 15 dB, and in the quietest — only 10 – 11 dB. This volume is comparable to the rustling of leaves and is practically lost against the background of ambient noise even in a residential area at night, not to mention louder conditions, and the difference between 11 and 18 dB in this case is not significant for human perception. A comparison table for sound starting from 20 dB is given in the "Noise level" section below.

Pump size

The dimensions of the pump that the water cooling system is equipped with.

Most often, this parameter is indicated for all three dimensions: length, width and thickness (height). These dimensions determine two points: the space required to install the pump, and the diameter of its working part. With the first, everything is quite obvious; we only note that in some systems the pump simultaneously plays the role of a water block and is installed directly on the cooled component of the system, and it is there that there should be enough space. The diameter approximately corresponds to the length and width of the pump (or the smaller of these dimensions if they are not the same — for example, 55 mm in the model 60x55x43 mm). Some operating features depend on this parameter. So, the large diameter of the pump allows you to achieve the required performance at a relatively low rotation speed; the latter, in turn, reduces the noise level and increases the overall reliability of the structure. On the other hand, a large pump costs more and takes up more space.

Pump power source

Type of power connector for the water pump.

3-pin. The three-pin power connector on older motherboards does not allow you to control the speed of the water pump motor in liquid cooling systems. At the same time, the pump always works in the maximum performance mode. Fresh "motherboards" are able to change the voltage on such connectors, thereby providing a change in engine speed.

4-pin. When using a 4pin power connector, it is supposed to control the speed of the pump motor using pulse-width modulation. A voltage of 12 V is applied to it with pulses. By changing the duration of the pulses, you can accurately set the speed of the water pump motor.

SATA. The SATA power connector will come in handy if all free 3pin and 4pin connectors are occupied on the motherboard.

Dimensions

General dimensions of the cooling system. For water systems (see "Type"), this paragraph indicates the size of the external radiator (the dimensions of the water block in such devices are small, and there is no need to specify them in particular).

In general, this is a fairly obvious parameter. We only note that for case fans (see ibid.), the thickness is of particular importance — it directly depends on how much space the device will take up inside the system unit. At the same time, it is customary to refer to fans with a thin case for models in which this size does not exceed 20 mm.