United Kingdom
Catalog   /   TVs & Video   /   Media Players & Set-Top Boxes

Comparison Android TV Box X98H Pro 64 Gb vs Android TV Box H96 Max V56 64 Gb

Add to comparison
Android TV Box X98H Pro 64 Gb
Android TV Box H96 Max V56 64 Gb
Android TV Box X98H Pro 64 GbAndroid TV Box H96 Max V56 64 Gb
Outdated ProductOutdated Product
TOP sellers
TypeMedia PlayerMedia Player
Operating systemAndroid TV 12Android TV 12
Connectivity and interfaces
Bluetoothv 5.0v 4.0
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 5 (802.11ac)
AirPlay
Chromecast
Miracast
Card reader
Web browser
IPTV support
Connectors
HDMIv 2.01
USB 2.031
USB 3.2 gen11
LAN1 Gbps1 Gbps
AV output
Coaxial output
Hardware
CPUAllwinner H618Rockchip RK3566
CPU cores44
CPU frequency1300 MHz2000 MHz
Built-in memory64 GB64 GB
RAM4 GB8 GB
Ultra HD 4K support
Ultra HD 8K support
HDR supportHDR10 Plus
Drive slot
General
Screen
Remote control+with voice control
Cooling systempassive (no fan)passive (no fan)
Dimensions (WxHxD)135x95x23 mm
Added to E-Catalogmay 2023may 2023

Bluetooth

Bluetooth is a technology used to connect various devices wirelessly directly. In media centers and TV receivers, it can be used to broadcast sound to wireless headphones and acoustics, to work with wireless mice and keyboards, to use a smartphone / tablet as a remote control, etc.; specific functionality should be specified separately. Also note that the supported version of Bluetooth can be specified here. The newest and most advanced is Bluetooth 5.0, but here is a more detailed description of the different versions:
  • Bluetooth v4.0. The version in which the "Bluetooth Low Energy" (LE) format was first introduced — in addition to regular Bluetooth (version 2.1 functionality) and the high-speed HE standard for transferring large amounts of information (introduced in version 3.0). Bluetooth LE allows you to significantly reduce power consumption when transmitting small data packets, such as request-responses about connection activity in idle mode. For the media centers and TV receivers themselves, this is not particularly important, but for portable equipment (especially miniature ones, where battery capacity is very limited), such functionality will be useful.
  • Bluetooth v 4.1. Development and improvement of Bluetooth 4.0. One of the key improvements was the optimization of collaboration with 4G LTE communication modules so that Bluetooth and LTE do not interfere with each other. In addition, this ve...rsion has the ability to simultaneously use a Bluetooth device in several roles — for example, to remotely control an external device while simultaneously streaming music to headphones.
  • Bluetooth v4.2. Further, after 4.1, the development of the Bluetooth standard. It did not introduce fundamental updates, but received a number of improvements regarding reliability and noise immunity, as well as improved compatibility with the Internet of Things.
  • Bluetooth v5.0. Version introduced in 2016. One of the most notable updates was the introduction of two new modes of operation for Bluetooth LE — with an increase in speed by reducing the range and with an increase in range by reducing the speed. In addition, a number of improvements have been introduced regarding simultaneous work with numerous connected devices, as well as work with the components of the Internet of Things.

Wi-Fi

Wi-Fi is a technology used for wireless connection to computer networks and for direct connection between devices. In media players, tuners and video capture devices, it can be used both to access the Internet or "local area" through a wireless router, and to communicate with a smartphone, tablet, etc. The AirPlay, Chromecast and Miracast functions are also based on this technology. The specific set of Wi-Fi features should be clarified separately; here we note that in this paragraph the specific supported version of such a connection can also be specified. Here are the main current options:
  • Wi-Fi 5(802.11ac). One of the newest (for 2020) standards. Uses the 5 GHz band (less crowded than used in earlier 2.4 GHz versions) for improved reliability and lower latency; and speeds can reach 6.77 Gbps with multiple antennas and 1.69 Gbps with a single antenna.
  • Wi-Fi 4 (802.11n). The predecessor of the above Wi-Fi 5, the first standard in which the 5 GHz band was introduced — here it is used along with the traditional 2.4 GHz and is not supported by some devices with Wi-Fi 4. Data transfer rate — up to 600 Mbps.
Note that, in addition to the directly claimed Wi-Fi standard, the media centre, digital receivers and video capture devices usually provide support for earlier versions — for maximum compatibility with different devices.

AirPlay

The technology of broadcasting audio and video signals through a Wi-Fi connection. Widely used in Apple electronics, the media centre with AirPlay will make it easy to duplicate a “picture” on a TV, for example, from an iPhone or iPad. The main disadvantage of this technology compared to similar Miracast is the need for a local network with a wireless router.

Chromecast

The original name is Google Cast. A technology for broadcasting content to external devices developed by Google. Allows you to transmit a signal from a PC or mobile device, broadcasting is standardly carried out via Wi-Fi. Note that in signal sources (smartphones, tablets, PCs, etc.), Chromecast is implemented at the level of individual applications. For example, at the time of its creation, this feature was available, among others, in the YouTube and Netflix apps for Android and iOS, as well as in the web versions of these apps for Chrome. Thanks to this format, this technology is extremely widespread nowadays, and the ability to connect a particular gadget to a media player with a Chromecast is usually limited to the ability to install appropriate applications on this gadget.

HDMI

HDMI is the most common modern interface for working with HD content and multi-channel audio. Video and audio signals with this connection are transmitted over a single cable, and the bandwidth in the latest versions ( HDMI 2.0 and HDMI 2.1) is enough to work with UltraHD resolution and even higher. Almost any modern screen (TV, monitor, etc.) with HD support has at least one HDMI input, which is why most media players and TV receivers have outputs of this type. However, there are also models without HDMI — these are mostly outdated or the most inexpensive solutions that use only analogue video interfaces. There are also models for several HDMI and in most cases one of these ports is for the incoming signal, while the HDMI ports differ in versions.

— v 1.4. The version presented back in 2009, however, does not lose popularity to this day. Supports 4K (4096x2160) video at 24 fps and Full HD at 120 fps; the latter, among other things, allows you to transfer 3D video over this interface. In addition to the original v 1.4, there are also improved versions v 1.4a and v 1.4b, where the possibilities for working with 3D have been further expanded.

-v 2.0. Version released in 2013. Among other things, it introduced the ability to work with 4K video at speeds up to 60 fps, compatibility with ultra-wide format 21: 9, as well as support for up to 32 channels and 4...audio streams simultaneously. HDR support was not originally included in this release, but was introduced in v 2.0a and further enhanced in v 2.0b; media players from this category can support both the original version 2.0 and one of the improved ones.

— v 2.1. 2017 version, also known as HDMI Ultra High Speed. Indeed, it provides a very solid bandwidth, allowing you to work even with 10K video at a speed of 120 fps; in addition, a number of improvements have been made to HDR support. Note that the full use of HDMI v 2.1 is possible only with a special cable, but the functions of earlier versions remain available when using conventional wires.

AV output

AV output. Analogue output for video and audio transferring. Previously, due to the large size of the equipment, it consisted of 3 RCA jacks and was connected to the TV accordingly. Now the devices have become more compact and don't have free space on the case. Therefore, the AV output is a single headphone jack, to which a tee cable is already connected (check availability in the package). Since all components of the video signal are on the same cable, the picture quality and immunity to interference are low.

CPU

The model of the CPU installed in the media player.

This information is mainly of reference value: the processor is selected in such a way as to provide certain practical characteristics (maximum resolution, support for certain standards, embedded applications, etc.). So when choosing, you should focus primarily on these specifications. However, if you wish, knowing the processor model, you can find detailed data on it and evaluate the capabilities of the media centre to work with resource-consuming applications. This can be useful, in particular, if you choose an Android model (see above) and plan to use additional software intensively — the set of applications for this OS is very extensive, and some of them are quite demanding on system resources.

Also note that CPU data is often specified for advertising purposes — to emphasize that the device has a fairly advanced chip from a well-known brand. Among the most common brands of such processors are Allwinner, Amlogic, Rockchip, Realtek.

CPU frequency

The clock speed of the CPU installed in the media centre.

On the technical side, the higher this indicator, the faster the processor works and the higher, accordingly, the overall system performance. At the same time, the CPU performance depends, in addition to the frequency itself, on a number of factors — architecture, number of cores, special design features, etc.; and the actual speed of the entire system is affected by performance of components other than the processor. In addition, manufacturers usually select processors in such a way that their computing power is guaranteed to be enough for all the features claimed for a media centre. Therefore, in this case, the CPU frequency is more of a reference parameter (and partly an advertising indicator that demonstrates the advanced specifications of the device), rather than practically significant for buyer.

RAM

The amount of RAM installed in the media player.

In general, this volume is selected by the manufacturer in such a way that the device can normally cope with the tasks that are claimed for it. On the other hand, all else being equal, more RAM usually means faster performance. This parameter is especially important if the media player runs under the Android OS (see above): such firmware allows the installation of additional applications that may have rather high requirements for RAM.

As for specific values, by modern standards, a device with more than 2 GB of RAM is considered a fast media player.
Android TV Box X98H Pro 64 Gb often compared
Android TV Box H96 Max V56 64 Gb often compared