Power consumption
The power consumed by the grinder during operation. Usually more than the output (useful) power (see above) due to losses during the conversion of energy from electrical to mechanical. However, the general patterns in this case are the same: a more powerful tool, on the one hand, is usually more performant, on the other hand, it is heavier, larger and more expensive. In addition, the total electricity consumption depends on this indicator; however, grinders, even the most powerful ones, consume relatively little energy, and difficulties can arise only when connecting a high-performance professional tool to weak electrical wiring.
Note that it is much easier to determine the consumed power than the useful one; therefore, only this parameter is often indicated in the characteristics, without specifying the useful power. In general, it is quite possible to compare grinders of the same type using it (see above): a modern tool has approximately the same efficiency, and in most cases the useful power values bare related in the same way as the consumed values.
Belt speed
Belt speed provided by the grinder. For more information about belt units, see "Type". In this paragraph, both one value and a range can be given — if the device has a speed control (see "Additionally — Speed regulator").
Other things being equal (primarily the same belt width), a higher speed has a positive effect on productivity. On the other hand, to ensure such a speed, a more powerful engine is needed, which accordingly affects the weight, price and energy consumption of the entire tool. In addition, the low belt speed contributes to accuracy: the chance of removing excess material is reduced. So it’s definitely worth looking specifically for a “fast” grinder only if it is to be used often and for large volumes of work. In other cases, a slower model may well be the best option. More detailed recommendations on this matter (including for different materials and types of work) can be found in special sources.
Belt / sheet width
The width of the belt or sheet for which the grinder is designed.
Working nozzles in the form of sheets are used in units with a vibrational principle of operation, in the form of tapes — respectively, in tape ones (for more details on both, see "Type"). Anyway, this paragraph does not indicate the working width of the tape / sheet (that is, the width of the surface adjacent to the material being processed), but the total — that is, the size of the nozzle itself. This size in itself determines only the compatibility of the grinder with certain sheets / tapes. At the same time, clamp-like fasteners (see “Sheet fastening”), used in most classic vibrating instruments, usually fix the sheet only in front and behind, so that in such instruments the restrictions on width are not as strict as, for example, on length: the sheet may be somewhat wider, and somewhat narrower than the nominal size. However, such possibilities should be clarified separately, and for a full guarantee it is better to clarify whether a particular machine allows deviations in width. The situation is similar with delta sanders, where Hook-and-loop is traditionally used: a discrepancy in width technically does not prevent the installation of a nozzle, but not all models allow this. As for the band tools, they may allow the installation of a narrower band — but not a wider one.
As for the working width, it, usually, corresponds to the general one, or (in some vibration models) differs slightl...y from it. Anyway, the working width is given under Sole Size (see below).
Pad size
The size of the sole provided in the tool.
This parameter is indicated for two types of grinders — most models with a vibrational principle of operation (namely, for vibration and delta grinders, as well as multifunctional ones), as well as belt units. For more information about both, see "Type", here we note that the sole as such is only available in vibrating tools — in tape tools, we are talking about the size of the section of the tape that is in direct contact with the material. Simply put, the size of the sole is the size of the working surface of the machine.
The larger the size of this surface, the more performant the machine, the better it is suitable for large volumes of work. And tape models, we recall, are used mainly for processing oblong parts and during operation they are usually located across such a part; so that for such machines it is highly desirable that the length of the tape be not less than the width of the surface to be treated — otherwise, accurate processing can be quite difficult. On the other hand, a large sole inevitably affects the dimensions, weight, and most often the cost of the tool, besides, it can make it difficult to use in cramped conditions. Yes, and consumables for such soles (sheets, tapes) require larger ones — and, accordingly, more expensive. So when choosing according to this indicator, it is worth considering the features of the intended application; if you wish, you can refer to special sources for detailed r...ecommendations on this matter.
Also note that for multifunctional models (see "Type") in this paragraph, several options are most often given — for each specific sole. However, there are models where only one set of sizes is indicated. This can either mean that both main vibration nozzles (rectangular and triangular) have the same dimensions in length and width — or that the data is indicated for a non-removable triangular sole, on which a larger rectangular one is put on if necessary. Such details can often be clarified directly from the photographs of the goods, in extreme cases — from the manufacturer's documentation.
Noise level
Approximate noise level generated by the grinder during operation. Note that this indicator is quite approximate, because. actual "loudness" can vary markedly depending on the type and shape of the material being processed, the surface it is placed on, and other circumstances. In addition, different manufacturers may use different measurement methods. Nevertheless, this indicator makes it possible to assess how comfortable this or that model is in operation and whether special hearing protection is required.
The most “quiet” modern grinders give out about 65 dB — this is comparable to loud speech at a distance of 1 m; in the loudest, the noise level reaches 107 dB — this is the volume of an industrial workshop.
Weight
The total weight of the grinder; for battery models (see "Power Source"), usually, it is indicated without taking into account the battery.
This indicator has two meanings. On the one hand,
light weight has a positive effect on manoeuvrability and reduces fatigue during work — especially when processing vertical surfaces and ceilings, as well as in other situations where the tool has to be held on weight. On the other hand, for grinders with a vibrational principle of operation (see "Type"), used for processing horizontal surfaces, a significant weight is considered optimal: it allows the tool to fit closer to the material being processed, and also contributes to stability and retention. So when choosing such a model by weight, it is worth considering the features of its intended application.