Dark mode
United Kingdom
Catalog   /   Automotive   /   Car Audio   /   Dashcams

Comparison 70mai Dash Cam A800S vs 70mai Dash Cam Lite

Add to comparison
70mai Dash Cam A800S
70mai Dash Cam Lite
70mai Dash Cam A800S70mai Dash Cam Lite
Compare prices 1
from £155.00 
Expecting restock
TOP sellers
Main
4K video recording. GPS module. Passive safety features LDWS and FCWS. Dynamic noise reduction for night shooting. Parking mode. Remote control from a smartphone.
Typedashcamdashcam
Installation
on the windscreen
on the windscreen
Glass mountstickersticker
Dashcam mountclipclip
Power connectormicroUSBmicroUSB
Camera
Screen typeSony IMX415Sony IMX307
ProcessorSigmaStar SSC8629GHiSilicon HI3556V200
Aperturef/1.8f/2.0
Full HD (1080)1920x1080, 30 fps1920x1080, 30 fps
Ultra HD (4K)3840x2160, 30 fps
Field of view140 °130 °
Recording features
G-sensor
sound recording
 
G-sensor
sound recording
WDR (Wide Dynamic Range)
Features
Navigation
speed on video
GPS
 
 
ADAS features
LDWS (lane control)
FCWS (distance control)
 
 
Functions
parking mode
Wi-Fi
speaker
parking mode
Wi-Fi
 
Screen
Screen size3 "2 "
Screen resolution320x240 px
General
Max. memory card size128 GB64 GB
Backup powerbatterybattery
Battery capacity500 mAh500 mAh
Size88.8x59.8x36.3 mm58.2х82х40.5 mm
Added to E-Catalogjuly 2021november 2019

Screen type

The sensor is a key element of any digital camera; it is from it and from signal processing technologies that the quality of the resulting image primarily depends. In this case, the type refers rather to the brand or brand of the matrix; it is usually indicated if the recorder is equipped with a high-quality sensor that is noticeably superior to most solutions on the market.

One of the most popular such options is Sony. The specific characteristics of the matrices ( IMX179, IMX222, IMX291, IMX307, IMX317, IMX322, IMX323, IMX326, IMX335, IMX415) may vary, but anyway, such a sensor is a sign of a high-end DVR.

In addition, there are models equipped with matrices from other manufacturers — Aptina, OmniVision, Samsung(GalaxyCore), Sandvik. Such solutions are generally considered to be simpler and more democratic than Sony — both in terms of price and functionality. Nevertheless, Samsung has a lot of developments in the field of electronics, and even such r...elatively “simple” sensors are usually more advanced and of higher quality than “know-names”.

Another manufacturer that produces fairly high-quality matrices is Panasonic. Such sensors are not as widespread as those described above, but they are still found in video recorders, including pretty advanced.

Processor

Model of the processor used in the dashcam

The term "video chip" is used mainly for devices with classic capabilities, "processor" — for advanced models with an abundance of non-standard functions. However, anyway, we are talking about the same component — the main computing unit, the characteristics of which directly affect the capabilities of the recorder as a whole. Knowing the model of the processor, you can find detailed data on it and evaluate how satisfied you are with a device based on such electronics. Of the most advanced modern chips, one can name, in particular, Ambarella A7L, Ambarella A12, Novatek NTK96655, Novatek NTK96660 and HiSilicon Hi3516.

Aperture

The aperture ratio of the lens installed in the video recorder.

This parameter determines how much the optics weaken the transmitted light flux. The aperture ratio is indicated by a fraction - for example, f/1.8. The smaller the number in the denominator, the more light the lens can transmit. A conventional model with an f/2.2 lens will theoretically produce a darker image than a recorder with a high-aperture optics of f/1.5.

High aperture ratio is important, first of all, when shooting in low ambient light conditions: it allows you to capture images in the twilight and dark hours of the day without creating additional artifacts in the form of noise. At the same time, when shooting with high-aperture optics, the blurring effect of moving objects in the frame is reduced. On the other hand, the actual quality of the recorder camera depends on many other factors - in particular, the type of matrix, the image processor used, etc. Therefore, the aperture ratio specified in the characteristics is not the ultimate truth - it is rather for reference.

Ultra HD (4K)

The maximum resolution and frame rate of video recorded by the recorder in the Ultra HD 4K standard.

The UHD 4K standard mainly includes video formats with a frame size of about 4K pixels horizontally — in particular, 3840x2160. However, in DVRs, this category includes some other resolutions with a frame size of 2160 vertical pixels — in particular, 2888x2160 (4:3 aspect ratio). For DVRs, this is a very advanced standard that provides the highest detail, but requires large matrices and powerful computing. As a result, its support is typical only for some top-level models.

As for the frame rate, the higher it is, the smoother and less blurry the video will be, the better the details on moving objects will be visible, and also the more space the footage will take up. However, when shooting in UHD, this figure rarely exceeds 24 fps due to the mentioned demands on the hardware “hardware”.

Field of view

The viewing angle provided by the main camera of the DVR. As a rule, it is indicated along the diagonal of the frame, less often - horizontally, because of this, models with the same numbers in the characteristics may differ somewhat in the actual field of view. So if you have doubts about this, when choosing, it does not hurt to find and watch video samples from different models.

Other things being equal, a wider viewing angle allows you to cover more space, but individual details in the frame are smaller. In addition, wide-angle lenses give geometric distortions of the image (however, DEWARP can be provided to eliminate them, see "Functions"). As for specific figures, viewing angles up to 120° inclusive are considered relatively small for modern registrars, values of 121 - 140 ° can be called average, 141 - 160 ° are above average, and the most wide-angle models are able to cover a space of more than 160 °.

Recording features

Among the photo and video functions used in the dashcam, we can distinguish G-sensor, rotating lens, live, HDR< /a>, WDR, polarizing filter, DEWARP and Time Lapse. More about them:

— G-sensor (video saving). A sensor that monitors shocks and vibrations acting on the DVR. The main function of this sensor is to ensure the safety of video materials in the event of an accident: in the event of a strong impact, characteristic of a collision or fall, the recorder with a G-sensor automatically saves the previously recorded video to a non-volatile memory protected from overwriting. Thus, materials about an emergency are not only guaranteed to be saved, but with a high probability remain intact even if the recorder itself is damaged. In addition, the G-sensor is used in parking mode — see "Functions" for details.

— Swivel lens. The ability to rotate the lens of the registrar horizontally or vertically, and in some cases — on both planes. This feature allows you to adjust the camera's field of view.

— Sound recording. Ability to record sound with a video recorder. First of all, we are talking about recording conversations in the cabin, which can become an add...itional argument in disputable situations — for example, they will allow you to determine whether the driver was talking on a mobile phone at the time of an accident, whether he noticed the situation on the road, how he assessed it, etc.

— Live broadcast. Allows you to remotely connect to the DVR and monitor what is happening from the camera in real time. It is very important if there is an additional camera in the cabin, when you can track the situation, for example, in taxi services, courier delivery, etc. This function will also become important and useful when a car is stolen, when you can not only see the hijacker from the video from the camera, but also track the route of his movement.

— HDR (high dynamic range). A function that increases the dynamic range of the recorder. Dynamic range is the maximum difference between the brightest and darkest area achievable within a single frame. Initially, this range for digital matrices is small, so an image with large brightness differences (for example, a road against a sunset sky) turns out to be either strongly overexposed in bright areas or very dim in dark areas. HDR addresses this shortcoming and also improves the overall colour quality. This is implemented as follows: the camera takes several frames with different settings and from them forms the finished image. At the same time, this technology is simpler and cheaper to implement than WDR, which is similar in purpose (see below). The main disadvantage of HDR is that this type of shooting increases the blurring of fast moving objects in the frame somewhat.

— WDR (Wide Dynamic Range). A function similar in purpose to HDR described above: it is used to improve the quality of a “picture” that has strong differences in brightness. The key difference between these technologies is that WDR works at the hardware level — due to high-end matrices. This allows you to achieve the required dynamic range within a single frame and do without gluing several frames — as a result, WDR, unlike HDR, does not give a blurring effect and does not worsen the detail of moving objects in the frame. The downside of this quality is the high price.

— Polarizing filter. The presence of a polarizing filter in the main camera of the DVR. Such a filter reduces the brightness of glare arising from strong light on glass, water and other similar surfaces. This greatly improves image quality, especially when shooting in sunny weather.

— DEWARP. A technology used to correct the "picture" obtained using a wide-angle lens. Such lenses are often used in DVRs; one of their drawbacks is their propensity for the fish-eye effect, the characteristic distortion when straight lines in the frame turn into rounded ones. The DEWARP function eliminates this shortcoming — it "bends back" curved lines, correcting the geometry of objects in the frame. Note that such a correction does not always work 100% accurately, however, the picture processed by DEWARP is anyway more reliable than without this technology.

— Time Lapse. A special mode of operation in which video recording is carried out at a slow frequency, which in practice is mainly used for shooting slow processes. Thus, for example, a long journey or a long sunset can fit into a 3-minute video.

Navigation

Speed on video. The ability to display data on the current speed of the car on the video being shot - usually in the form of numbers in one of the corners of the frame. As a rule, the device receives speed information from the built-in GPS sensor (see below). This function can be especially useful when analyzing ambiguous situations - for example, as additional evidence that the driver did not violate the speed limit.

GPS module. Built-in GPS satellite navigation module, which allows you to determine the current coordinates of the device. The specific ways in which this information can be used may vary depending on the other functionality of the registrar. Thus, it is data from GPS that is used to display speed on video (see above), as well as for the operation of the GPS informer and GPS navigator described below. There are other options, sometimes quite original - for example, if you have a 3G/4G modem, a beacon mode may be provided ( GPS tracker - see below).

GPS informant. A function that provides the driver with various useful information related to the current location. As the name suggests, the location itself is determined using GPS. One of the most popular ways to use an informant is to warn of approaching traffic cameras, stationary post...s and speed control systems that are not detected by a traditional radar detector. In addition, other similar functions may be provided - for example, a message about an area with a high accident rate or a separate large hole on the road. To operate the GPS informer, a database of relevant objects is entered into the device’s memory; When purchasing, it doesn’t hurt to clarify what exactly this database contains, how fresh it is, and whether it allows for updating and manually adding points.

— GPS navigator. The device can operate as a full-fledged GPS navigator. For this, in addition to the GPS module itself, the design provides built-in maps, as well as a fairly large display to display them. This allows you to do without purchasing and using a separate navigator, but this function is not particularly popular in modern DVRs. Firstly, it significantly affects the cost of the device; secondly, a regular smartphone or tablet with GPS is often enough to navigate on public roads; thirdly, recorders most often have rather modest navigation capabilities and are often inferior even to smartphones/tablets, not to mention specialized devices.

— GPS tracker. Another function found in recorders with a GPS module (see above). A GPS tracker allows the device to operate in beacon mode, constantly transmitting data about the location of the car to one or another recipient - for example, taxi service dispatchers, the customer of cargo transportation, etc. Such beacons are also sold as separate devices, but it is easier (and sometimes cheaper) to buy and install a recorder with this function. In any case, it is worth considering that a 3G/4G modem is usually used to transfer data (see below) - so to use the tracker you will have to buy a SIM card and regularly pay for mobile communications.

— GLONASS. The device supports the GLONASS navigation system, the Russian analogue of the GPS described above. Most often, this function is provided in addition to the GPS module: simultaneous use of two systems improves the speed and accuracy of positioning, and also provides an additional guarantee in case of failures in one of them.

—Galileo. European satellite navigation system, created as an alternative to American GPS. Note that it is under the control of civilian departments, not the military. With a full fleet of 24 active satellites, the system provides an accuracy of up to 1 m in public mode and up to 20 cm with the GHA service. Working in conjunction with GPS, Galileo provides more accurate position measurements, especially in densely populated areas.

ADAS features

LDWS (lane control). A system that monitors the car's position within the lane: it monitors the car's position on the road and, if it deviates from the current lane, gives a warning signal, attracting the driver's attention. This signal can literally save the lives of road users if the driver is distracted or falls asleep at the wheel. DVRs with LDWS will be especially useful for those who have to spend a lot of time driving without a break. However, if road markings are of poor quality or absent, this function becomes useless.

FCWS(distance control). A system that monitors the distance to the car in front and gives a signal if this distance is critically reduced and a collision is possible. Typically, FCWS is activated at a certain speed (for example, 40 km/h and above), and its sensitivity can be adjusted to suit traffic density. A collision warning is usually displayed and accompanied by an audible signal.

LLWS(headlights reminder). A sensor that monitors the level of ambient light; When the light level decreases, LLWS reminds the driver to turn on the headlights. Such a reminder may be useful not only in the dark, but also during the day - for example, in cloudy weather or when entering a tunnel.

Sign recognition. Intelligent system for automatic recognition and analysis of road signs. Typically..., this function aims to recognize speed limit signs and provide advance warning to the driver to adhere to the prescribed speed limits. However, many recorders with a similar function perfectly “see” other road signs, duplicating them to the driver on the screen of the head unit as a kind of safety net.

- Antison. A feature that reduces the risk of falling asleep while driving. When the Antisleep mode is turned on, the recorder, as a rule, periodically plays a special sound signal; in some models this sound stops itself, in others the driver must manually turn off the signal, confirming that he is not sleeping. However, it is worth keeping in mind that even the most advanced Antison system does not provide a complete guarantee against falling asleep while driving. Therefore, the most correct behavior when you are very tired is to stop and rest; This function should be used only in extreme cases.

Functions

Radar detector. A sensor that reacts to the radiation of a police radar and warns the driver that the speed of movement can be recorded by the device. DVRs with this function are classified into a separate category - combo devices (see “Type”). Let us remind you that radar detectors are also available as separate devices, but the combo device takes up less space when installed. On the other hand, the “anti-radar” functionality in combined video recorders is generally somewhat more modest than in separately made radar detectors. And combo devices are quite expensive (although, most often, they are cheaper than a pair of a separate recorder and a radar detector with similar capabilities). We would like to emphasize that the presence of this function does not relieve you of the obligation to adhere to the speed prescribed by the traffic rules.

Signature recognition. A function of the radar detector described above that improves recognition accuracy and reduces the likelihood of false alarms. To do this, samples (signatures) of emissions from the most popular radar models are entered into the device’s memory, and when a signal is detected, the device compares it with the data in memory. In this way, you can quite accurately determine whether the received signal is the radiation of a radar (and which one), or whether it is just extraneous interference. The disadvantages of detectors with signature r...ecognition are quite high cost, slightly increased response time and the inability to “recognize” radars that are not stored in memory (however, some models allow updating the signature database).

Parking mode. A special mode that allows you to record emergency incidents on video while the car is parked; The G-sensor is used for operation (see “Shooting functions”). In parking mode, the recorder is in “sleep” mode, and if the G-sensor detects an impact, full recording starts. In this case, the video from the buffer is “glued” to the beginning of the recording, which allows you to record not only the moment of the incident itself, but also a few seconds before it.

Motion sensor. Recorder function based on motion detection in the camera lens. Thus, if the recorder “understands” that there is movement in the frame, automatic shooting is carried out. This allows you to configure the DVR to automatically turn on when you start driving, as well as record possible accidents, thefts, and car thefts from parking lots that come into the field of view of your device.

Voice control. Ability to control the DVR using voice commands. The specific list of such commands (and supported languages) may vary depending on the model. However, in any case, this function contributes to traffic safety: it allows you to keep your hands off the steering wheel and not be distracted from the road when operating the recorder.

Gesture control. Ability to control the device using gestures. Note that the capabilities of such control in DVRs are very limited: as a rule, a sensor is used for this, which responds to the movement of the user’s hand in front of the device and is capable of performing only one specific action. However, even this feature provides additional convenience and safety (compared to pressing buttons and especially working with menus): moving your hand takes a split second, while the driver is practically not distracted from the road. As for specific functions implemented through gesture control, they may include protecting the recorded video from being overwritten, saving a photo, turning off the sound signal from the radar detector (see above), etc. In some models, such a function is hard-coded in the settings and cannot be reconfigured; in others it is possible to choose one of several options.

Wi-Fi module. Wi-Fi technology is mainly known as a way to access the Internet wirelessly, but it can also be used to communicate directly with another device. The methods of using this technology in recorders may be different, depending on the functionality. For example, some models are capable of updating map marks for a GPS navigator and a GPS informer database via such a communication (see above); others allow you to upload the captured video directly to the Internet (for example, YouTube); and the most advanced devices with this function have touch screens and, when removed from the mount, can even be used as full-fledged tablets, with the ability to view web pages and install various applications. There are also quite specific possibilities - for example, broadcasting filmed or filmed video to a smartphone or tablet, distributing mobile Internet to other devices (if there is a 3G/4G module), etc. Note that the number of public Wi-Fi access points is constantly increasing, they are available at most large gas stations and are often provided in certain areas of large cities (parks, historical and business districts, etc.). So, accessing the World Wide Web from the recorder without removing it from the car may turn out to be much easier than it looks at first glance.

— 3G/4G modem. 3G or 4G mobile communication module. Designed mainly for data transfer - in other words, for using the mobile Internet; Voice calls for DVRs are considered overkill and are generally not supported. The communication speed in modern mobile networks is often comparable to a communication via Wi-Fi; so the options for using 3G/4G connectivity can be quite varied, depending on the specific model. However, three functions are most often encountered: downloading information about traffic jams and other relevant data (updates for the GPS informer, weather forecast, etc.); work as a GPS tracker (if this function is available - see above); as well as Wi-Fi access point mode, with mobile Internet distribution to other devices (if you have your own Wi-Fi module, of course). If we compare 3G/4G and Wi-Fi, then mobile communications are available almost everywhere, but you have to pay for using it.

Bluetooth. The recorder has a built-in Bluetooth module. This technology is used for direct wireless communication with other devices; its application may vary depending on the functionality of a particular registrar. One of the most popular options is to broadcast sound to a Bluetooth-enabled radio or to the driver’s headset: these can be various notifications from a navigator, radar detector, etc., signals from the Antison system (see above), and in some models - even music from the built-in player. Another popular application format is exchanging files with a smartphone, laptop or other similar device (primarily copying footage). In addition, other, more specific ways of using Bluetooth may be envisaged. And here it is worth noting that most recorders with this function work on Android (see the corresponding paragraph), so the range of options in them is very extensive - in fact, it is limited to the range of compatible applications.

- Speaker. Own speaker installed in the DVR body. Through such a speaker, for example, audio can be played when watching a captured video, voice prompts from a GPS navigator/informant, signals from a radar detector (see above), etc. However, it is worth considering that the sound power can be quite low, and in a noisy environment it may be difficult to listen to the speaker.
70mai Dash Cam A800S often compared
70mai Dash Cam Lite often compared