United Kingdom
Catalog   /   Automotive   /   Car Audio   /   Dashcams

Comparison Aspiring Maxi 4 vs 70mai Rearview Dash Cam Wide

Add to comparison
Aspiring Maxi 4
70mai Rearview Dash Cam Wide
Aspiring Maxi 470mai Rearview Dash Cam Wide
Outdated Product
from $113.16 up to $188.48
Outdated Product
TOP sellers
Main
The big screen in all area of the front panel. Shooting Full HD video. Remote control from a smartphone.
Typedashcamdashcam
Installation
on rear view mirror
on rear view mirror
Power connectorminiUSBmicroUSB
Camera
Screen typeGalaxyCore GC2063GalaxyCore GC2053
ProcessorAllwinner V536HiSilicon Hi3556
Aperturef/2.0
Full HD (1080)1920x1080, 30 fps
Ultra HD (4K)3840x2160, 30 fps
Field of view170 °130 °
Recording features
G-sensor
sound recording
WDR (Wide Dynamic Range)
G-sensor
sound recording
 
Features
Navigation
speed on video
GPS
GPS informer
 
 
 
Functions
Wi-Fi
speaker
Wi-Fi
speaker
Additional camera
External camera1
Video resolution1920х1080 px
Frame frequency30 fps
Angle of view145 °
Screen
Screen size9.66 "
9.35 " /IPS/
IPS screen
Touchscreen
General
Max. memory card size128 GB64 GB
Backup powerbatterybattery
Battery capacity500 mAh470 mAh
Size255x71x36 mm266x75x38 mm
Added to E-Catalogseptember 2022august 2020

Power connector

The type of connector used in the recorder to power it. First of all, you should pay attention to this item if you plan to change the registrar with ready-made wiring for one or another type of connector ( miniUSB, microUSB, USB-C, DC 12V). Thus, the replacement of the registrar rests simply on installing a new one without re-changing the cable.

Screen type

The sensor is a key element of any digital camera; it is from it and from signal processing technologies that the quality of the resulting image primarily depends. In this case, the type refers rather to the brand or brand of the matrix; it is usually indicated if the recorder is equipped with a high-quality sensor that is noticeably superior to most solutions on the market.

One of the most popular such options is Sony. The specific characteristics of the matrices ( IMX179, IMX222, IMX291, IMX307, IMX317, IMX322, IMX323, IMX326, IMX335, IMX415) may vary, but anyway, such a sensor is a sign of a high-end DVR.

In addition, there are models equipped with matrices from other manufacturers — Aptina, OmniVision, Samsung(GalaxyCore), Sandvik. Such solutions are generally considered to be simpler and more democratic than Sony — both in terms of price and functionality. Nevertheless, Samsung has a lot of developments in the field of electronics, and even such r...elatively “simple” sensors are usually more advanced and of higher quality than “know-names”.

Another manufacturer that produces fairly high-quality matrices is Panasonic. Such sensors are not as widespread as those described above, but they are still found in video recorders, including pretty advanced.

Processor

Model of the processor used in the dashcam

The term "video chip" is used mainly for devices with classic capabilities, "processor" — for advanced models with an abundance of non-standard functions. However, anyway, we are talking about the same component — the main computing unit, the characteristics of which directly affect the capabilities of the recorder as a whole. Knowing the model of the processor, you can find detailed data on it and evaluate how satisfied you are with a device based on such electronics. Of the most advanced modern chips, one can name, in particular, Ambarella A7L, Ambarella A12, Novatek NTK96655, Novatek NTK96660 and HiSilicon Hi3516.

Aperture

The aperture ratio of the lens installed in the video recorder.

This parameter determines how much the optics weaken the transmitted light flux. The aperture ratio is indicated by a fraction - for example, f/1.8. The smaller the number in the denominator, the more light the lens can transmit. A conventional model with an f/2.2 lens will theoretically produce a darker image than a recorder with a high-aperture optics of f/1.5.

High aperture ratio is important, first of all, when shooting in low ambient light conditions: it allows you to capture images in the twilight and dark hours of the day without creating additional artifacts in the form of noise. At the same time, when shooting with high-aperture optics, the blurring effect of moving objects in the frame is reduced. On the other hand, the actual quality of the recorder camera depends on many other factors - in particular, the type of matrix, the image processor used, etc. Therefore, the aperture ratio specified in the characteristics is not the ultimate truth - it is rather for reference.

Full HD (1080)

The maximum resolution and frame rate of video taken by the recorder in the Full HD (1080p) standard.

Many people associate the term Full HD with a resolution of 1920x1080 — and indeed, this resolution is very popular, including among DVRs. However, this standard also covers other options — in particular, 1440x1080 (4:3 aspect ratio) and 1920x540 (halved vertical size). In general, support for this resolution is a good indicator for a modern registrar, indicating that the device belongs to at least an average level.

As for the frame rate, the higher it is, the smoother and less blurry the video will be, the better the details on moving objects will be visible, and also the more space the footage will take up. It is worth noting here that in low-cost Full HD recorders, shooting can be carried out at very low speeds — 15 fps or even 10 fps. Such a shooting speed allows you to watch video more or less normally, but for a normal display of moving objects, a higher frame rate is still desirable — at least 25 frames / sec.

Ultra HD (4K)

The maximum resolution and frame rate of video recorded by the recorder in the Ultra HD 4K standard.

The UHD 4K standard mainly includes video formats with a frame size of about 4K pixels horizontally — in particular, 3840x2160. However, in DVRs, this category includes some other resolutions with a frame size of 2160 vertical pixels — in particular, 2888x2160 (4:3 aspect ratio). For DVRs, this is a very advanced standard that provides the highest detail, but requires large matrices and powerful computing. As a result, its support is typical only for some top-level models.

As for the frame rate, the higher it is, the smoother and less blurry the video will be, the better the details on moving objects will be visible, and also the more space the footage will take up. However, when shooting in UHD, this figure rarely exceeds 24 fps due to the mentioned demands on the hardware “hardware”.

Field of view

The viewing angle provided by the main camera of the DVR. As a rule, it is indicated along the diagonal of the frame, less often - horizontally, because of this, models with the same numbers in the characteristics may differ somewhat in the actual field of view. So if you have doubts about this, when choosing, it does not hurt to find and watch video samples from different models.

Other things being equal, a wider viewing angle allows you to cover more space, but individual details in the frame are smaller. In addition, wide-angle lenses give geometric distortions of the image (however, DEWARP can be provided to eliminate them, see "Functions"). As for specific figures, viewing angles up to 120° inclusive are considered relatively small for modern registrars, values of 121 - 140 ° can be called average, 141 - 160 ° are above average, and the most wide-angle models are able to cover a space of more than 160 °.

Recording features

Among the photo and video functions used in the dashcam, we can distinguish G-sensor, rotating lens, live, HDR< /a>, WDR, polarizing filter, DEWARP and Time Lapse. More about them:

— G-sensor (video saving). A sensor that monitors shocks and vibrations acting on the DVR. The main function of this sensor is to ensure the safety of video materials in the event of an accident: in the event of a strong impact, characteristic of a collision or fall, the recorder with a G-sensor automatically saves the previously recorded video to a non-volatile memory protected from overwriting. Thus, materials about an emergency are not only guaranteed to be saved, but with a high probability remain intact even if the recorder itself is damaged. In addition, the G-sensor is used in parking mode — see "Functions" for details.

— Swivel lens. The ability to rotate the lens of the registrar horizontally or vertically, and in some cases — on both planes. This feature allows you to adjust the camera's field of view.

— Sound recording. Ability to record sound with a video recorder. First of all, we are talking about recording conversations in the cabin, which can become an add...itional argument in disputable situations — for example, they will allow you to determine whether the driver was talking on a mobile phone at the time of an accident, whether he noticed the situation on the road, how he assessed it, etc.

— Live broadcast. Allows you to remotely connect to the DVR and monitor what is happening from the camera in real time. It is very important if there is an additional camera in the cabin, when you can track the situation, for example, in taxi services, courier delivery, etc. This function will also become important and useful when a car is stolen, when you can not only see the hijacker from the video from the camera, but also track the route of his movement.

— HDR (high dynamic range). A function that increases the dynamic range of the recorder. Dynamic range is the maximum difference between the brightest and darkest area achievable within a single frame. Initially, this range for digital matrices is small, so an image with large brightness differences (for example, a road against a sunset sky) turns out to be either strongly overexposed in bright areas or very dim in dark areas. HDR addresses this shortcoming and also improves the overall colour quality. This is implemented as follows: the camera takes several frames with different settings and from them forms the finished image. At the same time, this technology is simpler and cheaper to implement than WDR, which is similar in purpose (see below). The main disadvantage of HDR is that this type of shooting increases the blurring of fast moving objects in the frame somewhat.

— WDR (Wide Dynamic Range). A function similar in purpose to HDR described above: it is used to improve the quality of a “picture” that has strong differences in brightness. The key difference between these technologies is that WDR works at the hardware level — due to high-end matrices. This allows you to achieve the required dynamic range within a single frame and do without gluing several frames — as a result, WDR, unlike HDR, does not give a blurring effect and does not worsen the detail of moving objects in the frame. The downside of this quality is the high price.

— Polarizing filter. The presence of a polarizing filter in the main camera of the DVR. Such a filter reduces the brightness of glare arising from strong light on glass, water and other similar surfaces. This greatly improves image quality, especially when shooting in sunny weather.

— DEWARP. A technology used to correct the "picture" obtained using a wide-angle lens. Such lenses are often used in DVRs; one of their drawbacks is their propensity for the fish-eye effect, the characteristic distortion when straight lines in the frame turn into rounded ones. The DEWARP function eliminates this shortcoming — it "bends back" curved lines, correcting the geometry of objects in the frame. Note that such a correction does not always work 100% accurately, however, the picture processed by DEWARP is anyway more reliable than without this technology.

— Time Lapse. A special mode of operation in which video recording is carried out at a slow frequency, which in practice is mainly used for shooting slow processes. Thus, for example, a long journey or a long sunset can fit into a 3-minute video.

Navigation

Speed on video. The ability to display data on the current speed of the car on the video being shot - usually in the form of numbers in one of the corners of the frame. As a rule, the device receives speed information from the built-in GPS sensor (see below). This function can be especially useful when analyzing ambiguous situations - for example, as additional evidence that the driver did not violate the speed limit.

GPS module. Built-in GPS satellite navigation module, which allows you to determine the current coordinates of the device. The specific ways in which this information can be used may vary depending on the other functionality of the registrar. Thus, it is data from GPS that is used to display speed on video (see above), as well as for the operation of the GPS informer and GPS navigator described below. There are other options, sometimes quite original - for example, if you have a 3G/4G modem, a beacon mode may be provided ( GPS tracker - see below).

GPS informant. A function that provides the driver with various useful information related to the current location. As the name suggests, the location itself is determined using GPS. One of the most popular ways to use an informant is to warn of approaching traffic cameras, stationary post...s and speed control systems that are not detected by a traditional radar detector. In addition, other similar functions may be provided - for example, a message about an area with a high accident rate or a separate large hole on the road. To operate the GPS informer, a database of relevant objects is entered into the device’s memory; When purchasing, it doesn’t hurt to clarify what exactly this database contains, how fresh it is, and whether it allows for updating and manually adding points.

— GPS navigator. The device can operate as a full-fledged GPS navigator. For this, in addition to the GPS module itself, the design provides built-in maps, as well as a fairly large display to display them. This allows you to do without purchasing and using a separate navigator, but this function is not particularly popular in modern DVRs. Firstly, it significantly affects the cost of the device; secondly, a regular smartphone or tablet with GPS is often enough to navigate on public roads; thirdly, recorders most often have rather modest navigation capabilities and are often inferior even to smartphones/tablets, not to mention specialized devices.

— GPS tracker. Another function found in recorders with a GPS module (see above). A GPS tracker allows the device to operate in beacon mode, constantly transmitting data about the location of the car to one or another recipient - for example, taxi service dispatchers, the customer of cargo transportation, etc. Such beacons are also sold as separate devices, but it is easier (and sometimes cheaper) to buy and install a recorder with this function. In any case, it is worth considering that a 3G/4G modem is usually used to transfer data (see below) - so to use the tracker you will have to buy a SIM card and regularly pay for mobile communications.

— GLONASS. The device supports the GLONASS navigation system, the Russian analogue of the GPS described above. Most often, this function is provided in addition to the GPS module: simultaneous use of two systems improves the speed and accuracy of positioning, and also provides an additional guarantee in case of failures in one of them.

—Galileo. European satellite navigation system, created as an alternative to American GPS. Note that it is under the control of civilian departments, not the military. With a full fleet of 24 active satellites, the system provides an accuracy of up to 1 m in public mode and up to 20 cm with the GHA service. Working in conjunction with GPS, Galileo provides more accurate position measurements, especially in densely populated areas.
Aspiring Maxi 4 often compared
70mai Rearview Dash Cam Wide often compared