United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Xiaomi Redmi 4x 32 GB / 3 GB vs Xiaomi Redmi 3s 32 GB / 3 GB

Add to comparison
Xiaomi Redmi 4x 32 GB / 3 GB
Xiaomi Redmi 3s 32 GB / 3 GB
Xiaomi Redmi 4x 32 GB / 3 GBXiaomi Redmi 3s 32 GB / 3 GB
from $150.00 up to $179.96
Outdated Product
from $179.96 up to $183.96
Outdated Product
TOP sellers
Main
All-metal housing (aluminium), three front touch buttons
Fingerprint scanner. High capacity battery — 4000 mAh. Case material — metal. IR port.
Display
Main display
5 "
1280х720 (16:9)
294 ppi
IPS
5 "
1280х720 (16:9)
294 ppi
IPS
Display-to-body ratio67 %71 %
Hardware
Operating systemAndroid 7.1Android 6.0
CPU model
Qualcomm MSM8940 Snapdragon 435 /64-bit/
Qualcomm MSM8937 Snapdragon 430
CPU frequency1.4 GHz1.4 GHz
CPU cores88
GPUAdreno 505Adreno 505
RAM3 GB3 GB
Memory storage32 GB32 GB
Memory card slotmicroSDmicroSD
Max. memory card storage256 GB128 GB
Test results
AnTuTu Benchmark42 000 score(s)42 000 score(s)
Geekbench2046 score(s)
3DMark Gamer's Benchmark562 score(s)
Main camera
Main lens
13 MP
f/2.0
13 MP /aperture f/2.0/
 
Full HD (1080p)30 fps30 fps
Flash
Front camera
Main selfie lens5 MP5 MP
Aperturef/2.2
Connections and communication
Cellular technology
4G (LTE)
CDMA /depending on model/
4G (LTE)
 
SIM card typenano-SIM
nano-SIM /nano + micro/
SIM slotsSIM + SIM/microSDSIM + SIM/microSD
Connectivity technology
Wi-Fi 4 (802.11n)
Bluetooth v 4.2
IrDA
Wi-Fi 4 (802.11n)
Bluetooth v 4.1
IrDA
Inputs & outputs
microUSB
mini-Jack (3.5 mm) top
microUSB
mini-jack (3.5 mm)
Features and navigation
Features
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
light sensor
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
light sensor
Navigation
aGPS
GPS module
GLONASS
digital compass
aGPS
GPS module
GLONASS
digital compass
Power supply
Battery capacity4100 mAh4000 mAh
Battery life (PCMark)9.15 h
Fast chargingnonenone
General
Bezel/back cover materialmetal/metalmetal/metal
Dimensions (HxWxD)139.2х70х8.7 mm139.3x69.6x8.5 mm
Weight150 g144 g
Color
Added to E-Catalogmarch 2017june 2016

Display-to-body ratio

The ratio of the screen area to the total front panel area of the phone. Simply put, this spec describes how much of the front panel is occupied by the screen; the rest is the bezels.

This indicator is given exclusively for smartphones with touch screens — it is for them that it is most relevant. The larger the percentage of the body is occupied by the screen, the thinner are the bezels, the neater the smartphone looks and the more convenient it is to work with it with one hand. As for specific numbers, the average values are 80 – 85 %, the higher values allow us to talk about a thin bezel, and more than 90 % — about a “bezel less” design.

Separately, we note that this parameter has nothing to do with the aspect ratio of the screen. The aspect ratio describes only the display itself — its proportions, the ratio between the larger and smaller side of the rectangle.

Operating system

The term "operating system" refers to all types of firmware — both full-fledged OS like iOS and Android, used in smartphones, and software shells for regular phones (non-smartphones). The main difference between these two is that a full-fledged OS initially has more extensive features, and also allows you to install and remove various applications — from games and social network apps to specialized tools like photo and video editors.

Among modern smartphones, two operating systems are most widely used — Android and iOS. Here is a more detailed description of each of them:

— Android. Free open source OS from Google. Used by all modern manufacturers except Apple; presented in many versions — in particular, 10 Q, 10 Go Edition, 11 R, 11 Go Edition, Android 12, Android 12 Go Edition, Android 13, Android 13 Go Edition, Android 14, Android 14 Go Edition, Android 15 are relevant today. This OS is notable primarily for its full-fledged multitasking and an extensive range of available applications — Android surpasses iOS in both;...on the other hand, in general, the quality of Android applications is somewhat lower due to the low requirements for them. Initially, Android has tight integration with Google services — the Google Play app and content store, Gmail mail, Google Drive cloud storage, etc.; however, exceptions to this rule are possible. Note that the latest versions of this OS can be found on the market both in its original form and in one of two specific editions:
  • - Go edition. Modification of Android, designed for low-cost smartphones with "weak" hardware. Both the OS itself and standard applications (Assistant, Gmail, etc.) have been redesigned in this edition in such a way as to ensure reliable operation even with low performance. At the same time, the developers tried to preserve the features of full-fledged Android as much as possible — however, some specific fwatures in the Go Edition were still not available (for example, standard maps do not support turn-by-turn navigation, and compatibility with Wear OS on smartwatches is not provided).
  • - HMS. Edition of Android, used in smartphones from Huawei. Due to US sanctions against China, this company cannot fully cooperate with Google — in particular, use Google services (Google Mobile Services — GMS) in its Android smartphones. As a replacement, HMS — Huawei Mobile Services were introduced. These services include Huawei ID, AppGallery, equivalents of Google's core services (assistant, browser, cloud storage, music/video, etc.), and app developer tools.
As for individual versions of Android, here are the main features of the options that are relevant nowadays:
  • - Android 10. Version released in September 2019. This version introduced an expanded set of full-screen gestures (with the possibility of optimization in individual applications — in particular, disabling gestures on certain areas of the screen to avoid conflicts), a "dark" screen mode at the system level, a number of important security updates (including a separate encryption standard for weak devices that do not support the AES format at the hardware level), full support for 5G communications and improved capabilities for working with augmented reality. In addition, a number of solutions have been implemented to optimize the experience on foldable smartphones with a flexible screen.
  • - Android 11. Another major update, released in the fall of 2020. The main updates touched messages and notifications. So, a separate section "Conversations" for messages was created in notifications, it also became possible to display various correspondence in the form of a "bubble" on top of any running application (Bubbles feature). Do Not Disturb mode has been expanded — now you can add exceptions to it for individual correspondence. Other important innovations include a system tool for recording screen video, a single control centre for smart home components, quick switching between playback devices (phone speaker, wireless headphones, Smart TV, etc.), native support for Android Auto, as well as expanded the ability to control the access of individual applications to certain data.
  • - Android 12. A popular operating system released in 2021. The new concept of Material You is based on discreet colour palettes and minimalistic two-dimensional objects with advanced animation. The system theme now adapts to the colour scheme of user's desktop wallpaper (Monet feature), and instead of round settings icons in the notification bar, rectangular dice with rounded edges are now used. The designers also reworked the animation of flipping through desktops, plugging in a charger, and so on. In smartphones running Android 12, instead of precise geolocation, you can select approximate location information, and icons have appeared in the notification bar that signal the inclusion of a camera or microphone when using certain applications. The Privacy Dashboard option reveals information about which programs have accessed the camera and microphone. The NFC on mobile devices can henceforth be used as a virtual key for a car (Car Key). Another innovation in the system is the call to Google Assistant by long pressing the power button of the smartphone.
  • -Android 13. A popular operating system for mobile devices, the 13th version of which was released in 2022. There were no major innovations in Android 13, but the OS brought a number of useful features and changes. In particular, the Material You workspace design concept can now pick primary colors from installed wallpapers or themes and apply them to the display of icons throughout the system. Privacy of user data has been taken to a new level of quality - in Android 13, you can configure individual permissions and select specific images from the Gallery that the application is granted access to. For each program, the user is free to choose a standard interface language. The system has also become more energy efficient, with improvements to the clipboard and barcode scanner.
  • -Android 13 Go. A light version of the Android 13 operating system, designed for installation on low-powered smartphones. A distinctive feature of the OS is the presence of a special algorithm that optimizes the computing power of the smartphone. Also, the system lacks some hardware-demanding functions. Android 13 Go introduced the design concept of the Material You interface, which allows you to adapt the color scheme of the menu to match the installed wallpaper. From the full-fledged Android 13 system, the Go version borrowed the function of issuing permissions to applications to send notifications and the ability to change the language for specific programs.
  • - Android 14. Operating system for mobile devices, released in 2023. There are, frankly, few system changes in the 14th version of the Android OS, and its main emphasis is on flexible customization of the interface. Among the innovations, it is important to mention the function of displaying notifications using the flash or display: for each application, you can now set a flashlight blinking pattern, and in the case of the screen, select the color palette of notifications. Also in the operating system, we implemented a useful ability to adjust the capture of screenshots, added a widget to display the battery charge and a list of active connections, and introduced an option for cloning applications in a systemic way. System fonts in the OS can be enlarged up to 200% of the standard size, while the scaling is implemented non-linearly - first of all, it is used for small text. Among other things, there are improved energy efficiency of the system and cosmetic changes in the interface in the manner of more rounded elements.
  • - Android 14 Go. A streamlined version of Android 14 for budget smartphones with limited hardware resources. The Go Edition distribution includes simplified standard apps while providing basic Android functionality with minimal impact on performance and energy consumption. Despite its "lightweight" nature, Android 14 Go supports enhanced notifications, new controls, and privacy settings that debuted in the full 14th edition of Google’s OS. However, smartphones running the Go version are not compatible with Wear OS smartwatches — a point to consider.
  • - Android 15. Android 15 was released in 2024. Notable new features include native support for satellite communication (for contacting emergency services or sending SOS signals), the ability to record and share only a specific app window (rather than the entire screen), updated hardware extensions for camera control, expanded message management, and flexible volume control. The system also includes traditional improvements in security features and enhanced energy efficiency.

— iOS. Apple's own operating system, used only in the gadgets of this manufacturer. The main advantages of iOS over Android are, first of all, careful optimization for specific devices (which allows you to achieve good performance with relatively modest amounts of RAM), general usability and safety, as well as high quality applications. In addition, iOS updates are released regularly and are available for all devices (with the exception of frankly outdated ones that no longer can handle new versions of the system). On the other hand, this OS does not support multitasking and is as closed to the user as possible: in particular, applications can only be installed from the original store, there is no access to the file system, memory cards are not supported.

— HarmonyOS. Huawei's Universal Operating System, also known as Hongmeng. It is used in a wide range of devices: appliances from the smart home ecosystem, smartwatches, smartphones and tablets. Harmony OS is a kind of add-on on top of Android without Google services. The app store for Harmony OS devices is called AppGallery.

— FlymeOS. A modified version of the Android operating system used as a software shell for Meizu smartphones. The OneMind engine is responsible for the stability of the OS. There is no application menu in Flyme OS, and all program icons are scattered across desktops. Distinctive features of the shell include advanced tools for working with files, the Aicy voice assistant, flexible adjustment of the mEngine vibration signal, Family Guardian parental control options, a structured gallery with a convenient visual editor.

— Proprietary. This term most often means the basic firmware installed in a regular phone (not a smartphone), usually, a push-button one. Such firmware has a more modest set of pre-installed programs than full-fledged OS; expanding this set is at best possible with Java-based universal mobile applications, and often additional applications are not supported at all. However, this cannot be called a disadvantage due to the specifics of the use of traditional phones.

Note that you can find devices with other operating systems, in addition to those described above. However, for the most part, these are either outdated models or devices with rare and uncommon types of firmware.

CPU model

The most popular nowadays are chips from Qualcomm and MediaTek, CPUs from Unisoc are slightly less common. Qualcomm has several processors of each series, namely Snapdragon 778G, Snapdragon 7 Gen 1, Snapdragon 7+ Gen 2, Snapdragon 7s Gen 2, Snapdragon 7 Gen 3, Snapdragon 7+ Gen 3, Snapdragon 865, Snapdragon 870, Snapdragon 888, Snapdragon 8 Gen 1, Snapdragon 8+ Gen 1, Snapdragon 8 Gen 2, Snapdragon 8 Gen 3, Snapdragon 8s Gen 3. And Mediatek has a low cost series MediaTek Helio P and a line of advanced chipsets MediaTek Dimensity (Dimensity 1000, Dimensity 7000, Dimensity 8000, Dimensity 9000).

Knowing the name of the CPU model installed in the smartphone, you can find detailed data on a particula...r CPU and evaluate its level and general capabilities. This is especially true in light of the fact that these capabilities depend not only on the number of cores and clock speed, but also on the specific nuances of the design.

Max. memory card storage

The largest volume of memory card with which the phone supports. For more information about the cards themselves, see "Memory Card Slot"; here we note that capacious cards often use advanced technologies that are not supported by all devices, and sometimes phones simply do not have enough power to process large amounts of data. Therefore, for the convenience of choosing in our catalog, the maximum supported volume is indicated.

In fact, there are cases when some devices may exceed the claimed characteristics. However, it is worth focusing on official data, because, if officially supported volume is exceeded, normal operation of the card is not guaranteed.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

3DMark Gamer's Benchmark

The result shown by the device when passing the 3DMark Gamer's Benchmark performance test.

3DMark is a series of benchmarks originally designed to test the graphics performance of a device; later, these tests were supplemented by checking the capabilities of the processor. Testing is carried out primarily in terms of performance in games (in fact, the benchmark itself is described as “a game without the ability to influence the process”), however, given that modern games can have very high requirements, 3DMark is a fairly visual tool for assessing the overall performance of the system . And since the latest versions of the test are made cross-platform, it also makes it possible to compare devices under different operating systems and even different classes (for example, smartphones with tablets). The more points this or that model received on this test, the more performant it is.

It is worth noting that the results of any benchmark are usually quite approximate, because. they depend on many factors that are not directly related to the system — from the load of the device with third-party programs and ending with the air temperature during testing. The error due to these factors is usually about 5 – 7 %; therefore, it is possible to speak of a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.

Aperture

Aperture of the main lens of the front camera installed in the phone. For models with several lenses (see "Front camera" — "Number of lenses"), the main one is the lens which is responsible for the main part of the shooting and does not have a pronounced specialization (auxiliary, ultra-wide-angle, etc.).

This parameter is indicated by a fraction, for example f/1.7; the smaller the number in denominator, the higher the aperture ratio, the more light the lens is able to transmit. Theoretically, a better aperture improves low-light performance, reduces motion blur, and can be useful for creating beautiful background blur; however, in fact, looking for a fast front camera(f/1.9 and better) makes sense mainly in cases where you plan to take selfies often and in large quantities and want to achieve the maximum quality of such pictures.
Xiaomi Redmi 4x often compared
Xiaomi Redmi 3s often compared