United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Circulation Pumps

Comparison Optima PT10-10 10 m vs Optima PTS15-11 11 m
3/4"
162 mm

Add to comparison
Optima PT10-10 10 m
Optima PTS15-11 11 m 3/4" 162 mm
Optima PT10-10 10 mOptima PTS15-11 11 m
3/4"
162 mm
Outdated Product
from $39.52 up to $40.80
Outdated Product
TOP sellers
Main functioncold water pressure boostcold water pressure boost
Designsingle headsingle head
Pump typecentrifugalcentrifugal
Rotor typewetwet
Specs
Max. flow1080 L/h2700 L/h
Max. head10 m11 m
Minimum operating pressure2 bar
Max. fluid temperature65 °С60 °С
Max. particle size0.05 mm
Features
1 speed
automatic operating mode
1 speed
automatic operating mode
Motor
Max. power consumption90 W120 W
Mains voltage230 V230 V
Motor typeasynchronousasynchronous
Shaft arrangementhorizontalhorizontal
Shaft materialcermet
Connection
Connection typethreadthread
Inlet/outlet arrangementcoaxiallycoaxially
Inlet3/4"3/4"
Outlet3/4"3/4"
More specs
Pump housing materialstainless steelcast iron
Impeller materialbrassplastic
Country of brand originPolandPoland
Protection classIP44
Insulation classH
Port-to-port length88 mm162 mm
Weight2.5 kg2.5 kg
Added to E-Catalogseptember 2021october 2015

Max. flow

The maximum flow of a pump is the amount of liquid it can pump in a certain amount of time.

Features of choosing the optimal performance option depend primarily on the purpose of the pump (see above). For example, for DHW recirculation models, the pump performance should not exceed the performance of the water heater. If the water heater is capable of delivering 10 litres per minute to the DHW circuit, then the maximum pump performance will be 10*60=600 L/h. The basic formula for calculating the performance of a heating system takes into account the power of the heater and the temperature difference at the inlet and outlet, and for the cold water system — the number of points of water intake. More detailed information about the calculations for each application can be found in special sources, and it is better to entrust the calculations themselves to professionals.

Max. head

The head can be described as the maximum height to which a pump can lift liquid through a vertical pipe without bending or branching. This parameter is directly related to the pressure that the pump produces: 10 m of head approximately corresponds to a pressure of 1 bar (do not confuse this parameter with operating pressure — see more about it below).

The head is one of the key specs for most circulation pumps. Traditionally, it is calculated based on the difference in height between the location of the pump and the highest point of the system; however, this principle is relevant only for units that boost the pressure of cold water(see "Suitable for"). Circulation pumps for heating and DHW work with closed circuits, and the optimal pressure depends on the total hydraulic resistance of the system. Detailed calculation formulas for the first and second cases can be found in special sources.

Minimum operating pressure

The lowest pressure in the circuit where the pump is connected, at which it can perform the main task (see "Suitable for"), providing the claimed operating parameters. The technical features of many modern models are such that some of them can operate at almost zero pressure, simply by the presence of water in the pipe; therefore, this parameter may not be specified at all.

Max. fluid temperature

The highest liquid temperature that the pump is capable of operating normally.

The possibility of using the unit directly depends on this parameter (see "Suitable for"): for example, models for heating systems must tolerate a temperature of at least 95 °C, and for DHW supply — at least 65 °C. Well, anyway, this parameter should not be exceeded: an overheated pump will fail very quickly, and the consequences of this can be very unpleasant.

Max. particle size

The largest size of solid particles in the pumped liquid, which the pump can pass through without damage and abnormal loads. The smaller this size, the more pure water is required for normal operation. If there is a possibility of larger particles entering the water, it makes sense to attend to the installation of an appropriate filter.

Max. power consumption

The electrical power consumed by the pump during normal operation and maximum performance.

This indicator directly depends on performance — after all, for pumping large volumes of water, an appropriate amount of energy is needed. And the power depends on two main parameters — electricity consumption and the load on the power grid, which determines the connection rules. For example, pumps with a power of more than 5 kW cannot be connected to ordinary household sockets; more detailed rules can be found in special sources.

Shaft material

It is the material from which the motor shaft in the pump is made.

— Cermet. It is a material that combines metals and their alloys with non-metallic components. In modern pumps, different types of cermets can be used, differing in price and quality; usually, the features in each case directly depend on the price category of the unit. However, it is well suited for household models with relatively low performance but is poorly suitable for professional use. Therefore, in pumps of more than 15,000 litres per hour, cermet shafts are rarely used.

— Stainless steel. This material is highly durable and reliable, due to which it is found in almost all categories of pumps — from relatively simple to professional, the performance of which is in the tens of thousands of litres per hour. However, it is somewhat more expensive than cermets.

Pump housing material

It is the material from which the outer part of the pump housing is made.

Stainless steel. As the name suggests, stainless steel is virtually corrosion-resistant. However, this is not its only advantage — this material is very durable and reliable, due to which it is used even in powerful high-performance models.

Cast iron. This material is in many ways similar to steel — in particular, it is considered very reliable — but it has a slightly higher weight. On the other hand, in most cases, this is not a noticeable drawback, but cast iron costs a little cheaper than stainless steel.

Brass. An alloy based on copper and zinc, which has a golden colour. The varieties used in circulation pumps are highly resistant to corrosion and even surpass stainless steel. Therefore, this option is well suited for water with a high oxygen content. The disadvantage of brass can be called a higher cost than that of the same steel.

Bronze. Another copper-based alloy. According to the main features, this material is similar to the brass described above. — Plastic. Units with plastic housings are lightweight, inert to water, and completely unaffected by corrosion. Moreover, polymer materials allow almost any thickness of the body, which determines the requirements of the mould for casting the workpiece. The di...sadvantage of plastic is its low mechanical strength. The plastic housing can be damaged on the outside and outside due to any kind of impact.

Impeller material

It is the material from which the impeller is made. It is the main part of the pump, which provides pressure due to movement.

Plastic. This material is inexpensive in itself, and it is easy to process, due to which it is distinguished by low cost. In addition, plastic is not subject to corrosion. On the other hand, it is considered the least reliable of all materials used in modern pumps and, therefore, is used in relatively inexpensive models that are not designed for serious loads. The exception to this rule are special high-strength polymers but they are rare.

Stainless steel. As the name suggests, stainless steel is virtually corrosion-resistant. However, this is not its only advantage — this material is very durable and reliable, and due to this, it is used even in powerful high-performance models.

Cast iron. This material is in many ways similar to steel — in particular, it is considered very reliable — but it has a slightly higher weight. On the other hand, in most cases, this is not a noticeable drawback, but cast iron costs a little cheaper than stainless steel.

Brass. An alloy based on copper and zinc which has a golden colour. The varieties used in circulation pumps are highly resistant to corrosion, they surpass even stainless steel. Therefore, this option is well suited for...water with a high oxygen content. The disadvantage of brass can be called a rather high cost.
Optima PTS15-11 often compared