Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Recuperators & Ventilation Recovery

Comparison Climtec RD-125 Standart vs Prana 150

Add to comparison
Climtec RD-125 Standart
Prana 150
Climtec RD-125 StandartPrana 150
Outdated ProductOutdated Product
User reviews
0
1
0
0
TOP sellers
Main
Equipped with a dust and carbon filter. A series of recuperators "Standard" can be equipped with the SMART function, it allows you to control the recuperator through a browser from a phone or computer.
Automatic valve for shutting off air flows.
System typedecentralizeddecentralized
Ventilation typerecuperatorrecuperator
Mountingwallwall
Mounting diameter132 mm162 mm
Specs
Air filtersF5, charcoal
Minimum air flow (recuperation)25 m³/h
Maximum air flow (recuperation)60 m³/h115 m³/h
Number of fan speeds4
Minimum noise level22 dB
Maximum noise level38 dB36 dB
Type of heat exchangerplateplate
Heat exchanger materialaluminiumcopper
Heat exchanger efficiency84 %91 %
Heater typeelectric afterheater
Heater power130 W
General specs
Remote control
Control via Internet
Display
EC fan
Power consumption in ventilation mode50 W32 W
Power consumption (reheater + ventilation)180 W
Mains voltage230 V230 V
Minimum wall thickness460 mm475 mm
Maximum wall thickness1000 mm535 mm
Decorative panel thickness75 mm
Country of originUkraineUkraine
Weight2.2 kg
Added to E-Catalogdecember 2019january 2019

Mounting diameter

The diameter of the holes intended for connecting air ducts to the ventilation unit. The more performant the air ventilation unit, the more air the ducts must pass and the larger, usually, the mounting holes. For wall-mounted models (see above), this parameter determines the size of the channel that must be drilled into the wall to accommodate the unit.

Air filters

Class of air purification, which corresponds to the supply and exhaust unit.

This parameter characterizes how well the unit is able to clean the air supplied to the room from dust and other microparticles. Most often it is specified according to the EN 779 standard, and the most common classes in ventilation units are as follows:

G3. Marking G denotes coarse filters designed for rooms with low requirements for air purity and retaining particles with a size of 10 microns or more. In residential ventilation systems, such devices can only be used as pre-filters; additional equipment will be required for additional purification. Class G3 is the second most efficient coarse cleaning class, it means a filter that removes from the air 80 – 90% of the so-called synthetic dust (test dust on which filters are tested).

G4. The most effective class of coarse filters (see above), which involves the removal of at least 90% of particles of 10 microns or more in size from the air.

F5. Classes with index F correspond to fine cleaning, the effectiveness of which is assessed by the ability to remove particles from the air with a size of 1 µm. Such filters can already be used for post-purification of air in residential premises, including even hospital wards (without increased cleanliness requirements). F5 is...the lowest of these classes, suggesting an efficiency of removing such dust at the level of 40 – 60%.

— F6. Fine cleaning class (see above), removal from the air of 60 – 80% of particles with a size of 1 µm.

F7. Fine cleaning class (see above), corresponding to the removal of 80 – 90% of dust from the air with a size of 1 µm.

F8. Fine cleaning class (see above), providing the removal of 90 to 95% of dust from the air with a size of 1 µm and above.

F9. The most efficient class of fine cleaning; the higher efficiency corresponds to the ultra-fine cleaning class H (see below). Class F9 achieves dust removal efficiency of 1 µm at 95% and above.

– H10 – H13. Classes H are used to mark filters of ultra-fine (absolute) purification (HEPA filters) capable of removing particles of the order of 0.1 - 0.3 microns in size from the air. Such filters are used in rooms with special requirements for air purity – laboratories, operating rooms, high-precision industries, etc. In filters corresponding to the H10 class, the efficiency of cleaning from the mentioned particles is 85%. H11 claims 95% absorption. And class H12 and H13 are the most efficient with particle retention of at least 99.95% and 99.99% respectively.

Carbon filters. Created on the basis of activated carbon or other similar adsorbent. Effectively trap volatile molecules of various substances, thanks to which they perfectly eliminate odors. Carbon filters are subject to mandatory replacement after the resource is exhausted, since if the service life is exceeded, they themselves can become a source of harmful substances.

Number of fan speeds

The number of speeds at which the fans of the air ventilation unit can operate.

The presence of several speeds allows you to choose the actual performance of the installation, adjusting it to the specifics of the current situation: for example, in a production room, you can reduce the ventilation intensity during the night shift, where there are fewer people than in the daytime. And the more speeds provided in the device (with the same performance range) — the more choice the user has, the easier it is to find the mode that best suits current needs.

Note that if the minimum and maximum of the air flow are indicated in the specs, but the number of speeds is not given, this does not necessarily mean smooth adjustment. On the contrary, most often such models are regulated traditionally, in steps, but for some reason, the manufacturer decided not to specify the number of speeds in the characteristics.

Maximum noise level

The noise level produced by the air ventilation unit in normal operation.

This parameter is indicated in decibels, while the decibel is a non-linear unit: for example, a 10 dB increase gives a 100 times increase in sound pressure level. Therefore, it is best to evaluate the actual noise level using special tables.

The quietest modern ventilation units produce about 27–30 dB — this is comparable to the ticking of a wall clock and allows you to use such equipment without restrictions even in residential premises (this noise does not exceed the relevant sanitary standards). 40dB is the daytime noise limit for residential areas, comparable to average speech volume. 55–60 dB — the norm for offices, corresponds to the level of loud speech or sound background on a secondary city street without heavy traffic. And in the loudest, they give out 75–80 dB, which is comparable to a loud scream or the noise of a truck engine. There are also more detailed comparison tables.

When choosing according to the noise level, it should be taken into account that the noise from the air movement through the ducts can be added to the noise of the ventilation unit itself. This is especially true for centralized systems (see "System"), where the length of the ducts can be significant.

Heat exchanger material

The heat transfer efficiency, energy saving indicators and service life of the unit directly depend on the material of the heat exchanger. Most often, heat exchangers of supply and exhaust units are made of the following materials:

- Aluminium. Aluminium is a lightweight metal with good thermal conductivity for efficient heat transfer between air streams. Aluminium heat exchangers quickly respond to temperature changes due to rapid heating and cooling, but just as quickly condense in a humid environment. In addition, aluminium dust particles, when released into the air, pose a potential threat to the human respiratory system.

Cellulose. Heat exchangers made of cellulose are lightweight and extremely inexpensive to manufacture. However, in terms of thermal conductivity and wear resistance, cellulose is an ineffective material and is therefore quite rare. On a separate line, it is important to mention that cellulose tends to absorb unpleasant odors, and its cleaning process does not involve washing or other contact with water.

Ceramics. Ceramics as a material for the manufacture of heat exchangers is valued for its wear resistance and high safety, but the cost of such models is often very high. In terms of heat transfer efficiency, ceramics can be called the “golden mean” - it is capable of quickly accumulating heat, but also retains it well, w...ithout completely releasing it to the supply air. This advantage turns into a disadvantage when recovering cold air during the heating period.

- Copper. Heat exchangers made of copper are characterized by high thermal conductivity - copper accumulates and releases heat best, but also cools down just as quickly. The downside of large temperature changes is the formation of condensation, which at low temperatures leads to freezing and a complete stop of ventilation. To avoid freezing, additional heating is used, and this often leads to increased power consumption. However, copper heat exchangers provide the highest efficiency (over 90%), prevent the formation of viral, fungal and bacteriological air pollutants due to natural antiseptic properties, and withstand many years of use. In terms of their combination of qualities, copper heat exchangers are among the best in their class.

Polystyrene. Some air handling units may use heat exchangers with plates made of plastic, polystyrene and other polymer-based materials. They are lightweight and corrosion resistant, but often have lower thermal conductivity. Another flaw in such materials is that many viruses and bacteria can remain viable for quite a long time on the plastic surfaces of the heat exchanger.

Heat exchanger efficiency

Efficiency of the heat exchanger used in the heat exchanger of the supply and exhaust system (see "Features").

Efficiency is defined as the ratio of useful work to the energy expended. In this case, this parameter indicates how much heat taken from the exhaust air, the heat exchanger transfers to the supply air. The efficiency is calculated by the ratio between the temperature differences: you need to determine the difference between the outdoor air and the supply air after the heat exchanger, the difference between the outdoor and exhaust air, and divide the first number by the second. For example, if at an outside temperature of 0 °С, the temperature in the room is 25 °С, and the heat exchanger produces air with a temperature of 20 °С, then the efficiency of the heat exchanger will be (25 – 0)/(20 – 0)= 25/20 = 80%. Accordingly, knowing the efficiency, it is possible to estimate the temperature at the outlet of the heat exchanger: the temperature difference between the inside and outside must be multiplied by the efficiency and then the resulting number is added to the outside temperature. For example, for the same 80% at an outdoor temperature of -10 °C and an internal temperature of 20 °C, the inflow temperature after the heat exchanger will be (20 – -10)*0.8 + -10 = 30*0.8– 10 = 24 – 10 = 14 °C.

The higher the efficiency, the more heat will be returned to the room and the more savings on heating will be. At the same time, a highly efficient heat e...xchanger is usually expensive. Also note that the efficiency may vary slightly for certain values of the external and internal temperatures, while manufacturers tend to indicate the maximum value of this parameter — accordingly, in fact, it may turn out to be lower than the claimed one.

Heater type

Electric heater. Heaters are called devices designed to increase the temperature of the air entering the room; such devices are installed behind the heat exchanger (when viewed from the outside). And the electric principle of heating is the most popular among the heaters. It is due to the simplicity and ease of installation: all the necessary equipment is already in the ventilation unit, you just need to supply power. The disadvantage of this option is considered to be a rather high power consumption; in addition, most powerful electric heaters require a 400 V power supply, and such a connection is far from being available everywhere — additional wiring may be required.

Water heater. Heater powered by a water heat exchanger. See above for more details on heaters in general; the heat exchanger is connected to a heating system powered by a boiler or other heater. The main advantage of this option is the fact that the heater itself does not consume electricity and is often cheaper to operate (especially if the boiler runs on gas or solid fuel), even though its power can be very impressive. In addition, by directing part of the heating power to heating the air, it is possible to achieve a more efficient use of the boiler capacity. At the same time, connecting a water heater is a rather complicated matter, which is why such devices are used somewhat less often than electric ones.
...
Water and electric heater. The presence in the design of both water and electric heaters. See above for details of each variety; their combination in one unit increases the overall efficiency, allows you to adjust the heating power and choose the type of heater depending on the situation. For example, in winter, you can mainly use a water heater, including an electric one only when the outside air temperature drops sharply when the water heat exchanger is no longer enough. And in case of an unexpected cold snap in the warm season, when there is no need to start the boiler, you can turn on only the electric heater and provide heat in the room. On the other hand, such versatility significantly affects the price, but in fact, it is rarely required. Therefore, this option has not received much distribution.

Electric preheater. Electric pre-heater installed outside of the heat exchanger — in such a way that the outside air first enters the pre-heater, then the heat exchanger (unlike heaters, which heat the air after the heat exchanger). In addition to the actual heating, such a device is also designed to protect the heat exchanger from freezing during the cold season (or to defrost an already frozen heat exchanger).

Electric heater and preheater. A design that combines two types of electric heaters at once — a heater and a preheater. About the features of both, see below, but here we note that such a combination provides high heating efficiency. However, it is not cheap.

Heater power

The power of the main heater used in the air ventilation unit. For models with two heaters (see "heater type"), this item indicates the power of the main heating element; at the same time, in units with water-electric heating, the water heat exchanger is considered the main one, in units with a preheater and afterheater, the afterheater.

Power determines primarily the amount of heat produced by the heater. This parameter is selected by the designers for the performance of the installation so that the power is enough for the volume of air passing through the unit. Thus power is more of a reference parameter than practically significant: most likely, it will be enough one way or another for the effective use of the installation. We note only some of the nuances associated with particular types of heaters. So, in water heaters, the actual power depends on the temperature of the supplied coolant; in the characteristics, indicators are usually given for a temperature of 95 °C, at a lower value and power, respectively, will be lower. With electric heating, the power consumption of the heater and, accordingly, the requirements for its connection directly depend on the power.

Control via Internet

Ability to control device via the Internet. The connection of the unit to the World Wide Web, usually, is carried out via Wi-Fi, and the control format may be different: in some models, you need to use a special application installed on your smartphone or tablet; in others, it is enough to open a special page in a browser. Anyway, this function allows you to control the device from anywhere in the world where there is Internet access, as well as, monitor its status and receive notifications about various operating parameters (current power, outdoor temperature, failures and malfunctions, etc.).
Prana 150 often compared