United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison Xiaomi Mi Power Bank 3 Pro 20000 vs Xiaomi Mi Power Bank 20000

Add to comparison
Xiaomi Mi Power Bank 3 Pro 20000
Xiaomi Mi Power Bank 20000
Xiaomi Mi Power Bank 3 Pro 20000Xiaomi Mi Power Bank 20000
from £65.74 
Outdated Product
from $27.96 up to $36.40
Outdated Product
TOP sellers
Main
Ability to charge laptops. Supports 45W bi-directional fast charging via USB-C.
Battery capacity20000 mAh20000 mAh
Real capacity12600 mAh12600 mAh
Battery capacity74 W*h
Battery typeLi-PolLi-Ion
Charging gadgets (outputs)
USB type C1
USB-A22
Max. power (per 1 port)40 W
Power output (all ports)45 W18 W
USB type С
40 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A
 
 
USB A
18 W
5V/2А, 9V/2А, 12V/1.5A
 
 
USB A (2nd)
18 W
5V/2А, 9V/2А, 12V/1.5A
 
 
Power bank charging
Power bank charging inputs
 
USB type C
microUSB
 
Power bank charge current via USB3 А2 А
Power bank charge power45 W18 W
Full charge time4.5 h7 h
Features
Low current charging
Fast charge
Quick Charge 4.0
Power Delivery
Samsung Adaptive Fast Charging
Huawei Fast Charge Protocol
Quick Charge
 
 
 
Bundled cables (adapters)
 
USB type C
microUSB
 
General
Body materialplasticplastic
Dimensions153x73x27 mm141.9x73x21.8 mm
Weight440 g338 g
Color
Added to E-Catalogjanuary 2019november 2015

Battery capacity

Battery capacity in watt-hour. These units of measurement are less popular than MilliAmp hour, but are more physically correct: they accurately describe the amount of energy accumulated by the battery. Thanks to this, in terms of capacity in Wh, it is possible to compare batteries with different rated voltages (while for mAh this is not allowed — additional calculations must be carried out using special formulas). At the same time, Wh can be converted to mAh without much difficulty if the battery voltage is known (for power banks this is in most cases 3.7 V): to do this, the capacity in Wh must be divided by the voltage and multiplied by 1000.

Battery type

The type of own batteries installed in the power bank. Lithium-ion(Li-Ion) or lithium-polymer(Li-Pol) batteries are most commonly used today. Other options are less common — solutions based on nickel-metal hydride(Ni-Mh) batteries, as well as on LiFePO4 type cells. In addition, a rather promising development has appeared relatively recently — graphene batteries; however, as of early 2021, they are just beginning to be introduced into mass production. Here are the main features of each of these varieties:

— Li-Ion. Lithium-ion technology allows you to create quite capacious batteries of small dimensions and weight. In addition, such elements are easy to use (the main operating parameters are regulated by the built-in controller), have a high charge speed and are practically not affected by the "memory effect" (reduction in capacity when charging an incompletely discharged battery). The main disadvantage of lithium-ion batteries is a rather narrow range of permissible ambient temperatures. This is not a problem in urban usage, when the power bank is used mainly indoors and is carried in a pocket or in a bag; but for less favorable conditions (such as long hikes in the cold season), it is worth choosing models with good thermal insulation. You can also find information that lithium-ion batteries are prone to fires and even explosions; however, this is usually due to...failures in the embedded controllers, and these controllers are also constantly being improved, and nowadays the risk of such an accident is so low that it can actually be neglected.

— Li-pol. Further development and improvement of the lithium-ion technology described above; the main difference is the use of a solid polymer electrolyte instead of a liquid one (hence the name). This made it possible to achieve even greater capacity without increasing the dimensions, as well as to reduce the potential for fires and explosions during abnormal operation. On the other hand, lithium-polymer batteries are somewhat more expensive than lithium-ion batteries and are even more sensitive to temperature disturbances.

— Ni-Mh. Nickel-metal hydride batteries are distinguished by their reliability and a wide range of permissible temperatures, however, with the same dimensions, they are inferior in capacity to lithium-ion (and even more to lithium-polymer) batteries, and they also require certain specific operating rules to be observed. In addition, it is worth noting that Ni-Mh technology is well suited for removable batteries. It is in this format that such batteries are most often used: power banks of the Ni-Mh format are usually adapters with slots for several replaceable elements of a standard size (for example, AA). In this case, usually, several corresponding removable batteries are included in the kit, however, if desired, they can be replaced with other elements — these can even be disposable batteries from the nearest store. Such an opportunity can turn out to be very useful if the power bank is out of juice at an unfortunate moment, but there is no way to charge it; in addition, worn-out batteries can be replaced with fresh ones without changing the entire device.

Li-FePO4. Another modified version of the Li-Ion batteries described above, the so-called "lithium iron phosphate". The advantages of such cells over classical lithium-ion ones are, first of all, a stable discharge voltage (until the energy is exhausted), high peak power, long service life, resistance to low temperatures, stability and safety. In addition, due to the use of iron instead of cobalt, such batteries are also safer to manufacture and easier to dispose of. At the same time, they are noticeably inferior to the classic lithium-ion ones in terms of capacity, and they are more expensive, which is why they are rarely used.

— Graphene. Batteries based on graphene — a carbon film one atom thick. The battery itself consists of a set of such films, between which silicon plates are laid, and lithium cobaltate or magnesium oxide is used as an anode. This design provides a number of advantages over the earlier batteries described above. First, graphene technology provides a high charge density, which allows you to create capacious and at the same time light and compact batteries. Secondly, for the production of such batteries, fewer rare resources are needed than for the same lithium ones; and the production itself is more environmentally friendly. Thirdly, such batteries are not prone to overheating and explosions when overloaded or damaged. On the other hand, graphene power supplies take a long time to charge and are not durable. However, this technology is still developing, and in the future it is likely that these shortcomings will be eliminated — completely or at least partially.

USB type C

The total number of USB type C ports for charging connected gadgets. By 2023, they have become very popular. However, power banks are equipped mainly with one output port of the corresponding format. Models with 2 USB type C outputs have not yet gained such popularity.

Max. power (per 1 port)

The maximum power that the power bank, theoretically, is capable of delivering to one rechargeable device. Usually, this power is achieved under the condition that no other device is connected to the battery (although exceptions to this rule are possible). And if you have ports with different charging currents or support multiple fast charging technologies, this information is given for the most powerful output or technology.

For modern power banks, a power of 10 watts or less is considered quite low; among other things, it usually means that the device does not support fast charging. Nevertheless, such devices are inexpensive and often turn out to be quite sufficient for simple tasks; Therefore, there are many models with similar specs on the market. The power of 12 – 15 W is also relatively small, 18 W can be called the average level, 20 – 25 W and 30 – 50 W is already considered an advanced level and in some solutions this parameter may exceed 60 W.

In general, higher power output has a positive effect on charging speed, but in fact there are a number of nuances associated with this parameter. Firstly, not only the power bank, but also the gadget being charged should support the appropriate power — otherwise the speed of the process will be limited...by the specs of the gadget. Secondly, in order to use the full capabilities of the power bank, it may be necessary for it to be compatible with certain fast charging technologies (see "Fast Charging").

Power output (all ports)

The total charge power provided by the power bank on all connectors overnight - when devices are connected simultaneously to all charging ports.

This parameter is given due to the fact that the total charge power does not always correspond to the sum of the maximum powers of all available ports. The built-in battery of a power bank often has its own limitation on the output power. Therefore, for example, in a model with two 18 W USB ports, each total charge power can be the same 18 W. Note that the distribution of power among the connectors may be different: in some models it is divided equally, in others it is divided in proportion to the maximum current strength (if it differs on different ports). These nuances should be clarified using the detailed characteristics of the charging connectors.

If you plan to regularly use all power bank connectors at once, you should pay attention to this indicator.

USB type С

USB type C is a popular type of USB connector characterized by its small size, reversible design, and fairly advanced (in theory) capabilities. If there are several connectors of this type, the first one is considered to be capable of delivering more power.

It is characterized by the rated power supplied by the power bank when a load is connected to the first or only USB type C output and the current strength. The speed of the charging process directly depends on the power. It is traditionally calculated by multiplying the current by the voltage; However, the standard voltage for USB power is 5 V, so current is considered to be the main indicator of power.

The magnitude of the charging current directly determines the power supplied to the device being charged - and, accordingly, the maximum speed of the process (in practice, it may be lower if the device being charged has strict restrictions on the charge current). Power is also determined by the supply voltage (the number of watts is calculated by multiplying amperes by volts); While the standard USB output voltage is 5V, many fast charging technologies (see below) use higher voltages. Therefore, in the notes to this paragraph, the maximum power on the USB type C connector is also indicated.

As for specific values, the most popular option for USB type C outputs in modern power banks is 3 A. There are also other values - both sma...ller ( 2.4 A, 2.1 A and 2 A) and larger ones - but noticeably less frequently.

USB A

A standard USB A port is characterized by the rated power supplied by the power bank when a load is connected to the first or only USB A output and the current strength. If there are several connectors of this type, the first one is considered to be capable of delivering more power.

The speed of the charging process directly depends on this indicator. Power is traditionally calculated by multiplying current by voltage; However, the standard voltage for USB power is 5 V, so current is considered to be the main indicator of power.

The charging power and, accordingly, the speed of the process depend on the current strength. Nowadays, on USB ports, a current of 2 A or 2.1 A is considered basic and quite modest, 2.4 A and 2.5 A are average, 3 A and more are noticeably above average, and certain fast charging technologies allow you to achieve values of 4 A. 4.5 A and 5 A. However, it is worth considering that to operate at high current, such an opportunity must be provided not only in the power bank, but also in the gadget being charged. So when purchasing a model, it doesn’t hurt to check whether the devices being charged suppo...rt high charge currents.

It is also worth noting two nuances associated with the presence of multiple USB charging ports. Firstly, they may differ in the current they produce. This allows you to select the optimal connector for each device: for example, to quickly charge a tablet with a capacious battery, it is desirable to have a higher current, and a device with a low charging current can be connected to a “weaker” port, so as not to create unnecessary load on the battery and controller. The second caveat is that if all USB connectors are used simultaneously, the current supplied by each of these connectors may be lower than the maximum; in other words, not all power banks allow you to simultaneously use USB ports at the maximum possible power. You can understand whether such a possibility exists by looking at the charge power (see below); if the charge power is not indicated, you should refer to detailed documentation from the manufacturer.

USB A (2nd)

Characteristics of the second USB A port. Read more in the paragraph above.

Power bank charging inputs

The type of input used to charge the power bank's own battery. Simply put, this paragraph indicates which connector on the cable you need to charge the power bank. At the same time, some models provide several inputs for charging at once, which simplifies the search for a cable. Also note that for models with a built-in power bank charging connector (see below), the type of this connector is specified separately.

Most often in modern power banks there are standard connectors microUSB, USB type C and/or Apple Lightning. A lot of accessories are produced for such connectors — cables, network and car chargers, adapters, etc.; so there is usually no difficulty in finding a source of energy. Less common are models with DC input, they are usually equipped with their own power supply (or at least a cable under such a connector). Here is a more detailed description of the different types of inputs:

— microUSB. A smaller version of the USB connector, still very popular in portable tech, despite the active spread of the more advanced USB type C. It has relatively modest capabilities — in particular, it does not allow the implementation of some advanced fast charging technologies. On the other hand, it is very easy to find a source of energy for such a connector: both modern and many of the frankly outdated cables and chargers are...suitable for it.

— USB type C. A miniature type of USB connector, positioned, among other things, as the successor to microUSB. The most noticeable improvement is the reversible design, which allows you not to worry about which side of the plug is inserted into the connector. However, in the case of power banks, this is not the only or even the main advantage: USB type C has more extensive capabilities, allows more powerful currents and use a wider range of fast charging technologies (and Power Delivery was originally created specifically for this connector). Note that in some models the same connector of this type can be used both as an input for charging the battery and as an output for charging external devices — moreover, with automatic switching between these modes.

— Apple Lightning. Initially, this connector is designed for portable gadgets made by Apple. However, in the case of power banks, it can also be found in third-party devices: the idea is that the presence of Lightning allows you to charge an external battery using a cable from an iPhone or iPad and eliminates the need to look for a separate wire. For a number of reasons, this charging input is rarely used as the only one, more often it is provided in addition to microUSB or USB type C (see above).

— DC input. DC is a standard covering several types of connectors at once. Their common feature is a signature round shape, but the diameter, rated voltage and power can be different. In this sense, such connectors are not as convenient as USB type C, Lightning and other generally accepted standards — with a DC socket, it is best to use a native power supply (usually it comes bundled right away), and finding a third-party power source can be a problem. On the other hand, inputs of this type have practically no power limitations, it is easier to achieve high power supply with them than with the connectors described above. Therefore, DC inputs are used mainly in high-capacity power banks, where charging through a "weaker" interface would take an unreasonably long time. However, such models can also be equipped with standard microUSB or USB type C connectors "just in case".
Xiaomi Mi Power Bank 3 Pro 20000 often compared
Xiaomi Mi Power Bank 20000 often compared