United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Smartwatches & Trackers

Comparison Honor Watch GS 3 vs Honor Watch GS Pro

Add to comparison
Honor Watch GS 3
Honor Watch GS Pro
Honor Watch GS 3Honor Watch GS Pro
Compare prices 6Compare prices 6
TOP sellers
Main
8-channel sensor for measuring pulse and oxygenation. Ability to make Bluetooth calls from the watch.
Military security standard MIL-SDT-810G.
Typesmartwatchsmartwatch
Interface
Bluetooth v 5.0 /BLE, BR, EDR/
Bluetooth v 5.1
Gadget OSLiteOS
Telephony
Calls and alerts
call notifications
SMS notifications
sound signal
vibration
built-in microphone
built-in speaker
call notifications
SMS notifications
sound signal
vibration
built-in microphone
built-in speaker
Sports and tourism
Possible measurements
heart rate monitor
blood oxygen level
number of steps
distance traveled
movement speed
calories burned
activity time
sleep tracking
stress level
heart rate monitor
blood oxygen level
number of steps
distance traveled
movement speed
calories burned
activity time
sleep tracking
stress level
Sports modes100103
Swimming mode
Navigation
GPS module /L1+L5/
GLONASS
Galileo /E1+E5a/
 
compass
altimeter (altitude)
barometer (pressure)
GPS module
 
 
GPS track guidance
compass
altimeter (altitude)
barometer (pressure)
Display
Touch screen
Typecolourcolour
Display typeAMOLEDAMOLED
Size1.43 "1.39 "
Screen resolution466x466 px454x454 px
PPI326 ppi326 ppi
Watch face protectionglass
Bezel-less
Hardware
CPU modelApollo 4HiSilicon Kirin A1
Memory storage4 GB4 GB
Extra features
built-in player
light sensor
accelerometer
 
built-in player
 
accelerometer
gyroscope
Power source
Device chargingmagneticmagnetic
Source of powerLi-IonLi-Ion
Battery capacity451 mAh790 mAh
Operating time (normal mode)14 days25 days
Operating time (active mode)336 h
Battery life (GPS)30 h40 h
Case and strap
Materialsteelsteel
Bezelmetal
Coloursilver, gold, blackblack, blue, beige
Strap colourssilver, gold, blacksilver, blue, beige
Strap Options
leather
rubber/silicone
 
 
rubber/silicone
fabric
Clasp optionsclassic buckleclassic buckle
Quick release strap
Band Width22 mm
Wrist strap140 – 210 mm
General
Waterproof5050
Dustproof & waterproofIP67
MIL-STD-810
 /MIL-STD-810G/
Dimensions (without strap)45.9x45.9x10.5 mm48х48х13.6 mm
Weight
44 g /without strap/
46 g /without strap/
Color
Added to E-Catalogoctober 2022october 2020

Interface

The main way to connect a wearable gadget with external devices. For smartwatches and fitness bands (see "Type"), this refers to a connection to a smartphone or tablet, while in the case of watch-phones, it usually refers to headsets.

— Bluetooth. Wireless technology for direct communication of various devices with each other. This is the most popular interface in smartwatches and bracelets: Bluetooth modules can be made very tiny, the communication range even in the earliest versions reaches 10 m, and different generations of Bluetooth are mutually compatible in terms of basic functionality. Specifically, the versions nowadays are as follows:
  • v2.0. The earliest standard used in modern wearable gadgets. The possibilities of such a connection are more modest than those of more advanced versions, but they are often quite enough.
  • v3.0. A standard that combines classic Bluetooth v 2.0 and a high-speed “add-on” for transferring large amounts of data.
  • v4.0. Further, after 3.0, improvement of Bluetooth: in addition to the classic and high-speed format, this version added Bluetooth Low Energy technology. Support of this technology is especially useful in fitness trackers, which usually transmit small amounts of data, but constantly.
  • v4.1. Modification of the 4.0 standard described above with improved protection against interference while working with LTE mobile communications. ...i> v4.2. Another improvement of the 4.0 standard, which introduced, in particular, improved data protection and increased connection speed.
  • v5.0. The fifth generation of Bluetooth, released in 2016. One of the most interesting improvements is the introduction of two special modes of operation for Bluetooth Low Energy: extended range (by reducing speed) and increased speed (by reducing range).
— USB. Wired connection to a computer/laptop using a USB cable. A rather specific option, found in some fitness trackers and children's beacons. During working hours, such a gadget functions completely independently, and the USB connection is used only occasionally, for some special tasks: transferring collected data to a computer, charging the battery, changing some settings, etc. This is not as convenient as a permanent connection via Bluetooth, therefore, in wearable gadgets, USB is rarely used as the main connection method.

— 3.5 mm (mini-Jack). Another wired connection method, almost completely similar to the USB described above and differing only in the type of connector. Also, the 3.5 mm plug is designed mainly to work with smartphones and tablets, and not with computers. However, it is also extremely rare.

Gadget OS

The operating system installed on the gadget itself.

In this case, we do not mean basic firmware, but rather a full-fledged OS that provides extensive capabilities. For example, allowing you to install additional applications or functionally tailored for close integration with certain web services. The most popular operating system options for wrist gadgets are presented below:

Android. The Android mobile OS is known mainly for smartphones and tablets, but its open source code allows it to be optimized for other devices, including wrist devices. Note that traditional Android applications are generally poorly compatible with wrist gadgets, but some programs are able to automatically adapt to such devices, and specialized software is also produced for certain models (often by the manufacturers themselves).

– WatchOS. An operating system specially designed for Apple wrist gadgets and used only in them. Among the key features, it is worth noting support for the Siri voice assistant and the Apple Pay system, a set of fitness tools, as well as a high degree of optimization for Apple Watch controls. WatchOS uses its own applications, which can also be created by third-party developers.

Wear OS. The system formerly known as Android Wear. This is a specific version of Android, originally developed as a solution for “smart” wrist gadgets. It features a radically redes...igned interface, close integration with the Google Assistant voice assistant, and so-called proactive notifications. Thanks to the latter, the device is able to independently, without a request, issue extended tips for a certain situation: for example, before an important meeting, plot a route on the map taking into account traffic jams and, if necessary, turn on a reminder earlier than the originally planned time.

— Nucleus. Quite a rare and unusual “OS”: it does not belong to a general-purpose OS, but to real-time systems. Such systems are optimized for the fastest possible response to external events (whereas in conventional operating systems the reaction occurs depending on the distribution of resources). Specifically, Nucleus has all the capabilities necessary for wrist gadgets, however, for a number of reasons, such firmware is quite rare.

Tizen. An open operating system for mobile devices, primarily promoted by Samsung. As with Android, the original Tizen is poorly suited for smartwatches, so we usually talk about a special version of Tizen Wearable. It is worth noting that there are tools that allow you to run Android applications on devices running this OS.

– ColorOS. A system developed by OPPO and used in its mobile devices. Directly for smart watches, the operating system is presented in the form of ColorOS Watch - the system interface is optimized for use on small screens and includes tools for tracking the user’s physical activity, monitoring sleep and health, managing notifications, etc. Moreover, smartwatches powered by ColorOS Watch can serve as a digital key for some modern Chinese-made cars.

HarmonyOS. Huawei's universal operating system, also known as Hongmeng. Provides operation of a wide range of devices: equipment from the smart home ecosystem, smart watches, smartphones and tablets. Onboard wearables, HarmonyOS is a redesigned version of the homegrown Lite OS used in Huawei watches and other low-end devices.

– Zepp OS. A specialized real-time system for Amazfit and Zepp smartwatches. It is an open platform for health management and activity tracking, based on the principles of ease, fluidity and practicality. One notable feature of the OS is support for cloud Internet service applications (like Spotify, SoundCloud, etc.).

– Lite OS. A lightweight system for wearable gadgets with limited computing power, used in some simple smartwatch models from Huawei. A more advanced version of the operating system for such devices from the manufacturer is HarmonyOS (see above).

– Fitbit OS. An operating system developed for Fitbit wrist gadgets and used only in them. Fitbit OS supports the installation of various applications on smart watches, the system implements gesture control, and many widgets and watch faces have been released for it. The operating system also provides targeted exercise modes and the possibility of contactless payment for purchases in stores using the NFC chip of the watch using the Fitbit Pay program.

– Moto Watch OS. Proprietary software for Motorola smart watches from the category of real-time systems. Moto Watch OS is designed with an eye toward accurate health tracking, the OS also collects information about user activity, supports receiving notifications from a connected smartphone, and ensures maximum battery life for the wearable gadget. Note that the operating system does not support installing applications from third-party developers - you will have to be content with pre-installed tools and programs.

– MagicOS. An operating system specially designed for Honor wrist gadgets and used only in them. In appearance and in terms of its set of capabilities, it is very similar to the related operating system HarmonyOS, which is found in Huawei wearable devices. It is argued that MagicOS has its own philosophy and development vector.

– BlueOS. Vivo's own OS, which can run a wide range of devices - from mobile phones and tablets to smart watches. In fact, the system’s debut took place on board wearable gadgets in 2023. The “operating system” is written in the Rust programming language with an emphasis on maximum protection of user data. A distinctive feature of BlueOS is generative artificial intelligence. Thus, Vivo smart watches have already implemented the function of creating dials by voice with the participation of AI.

– HyperOS. A unified Linux-based operating system for Xiaomi smart devices. But if in mobile phones HyperOS has replaced the proprietary MIUI shell, then in the smartwatch segment this is something new. The emphasis in Xiaomi's operating system is on the close interconnection of all devices running HyperOS within a single ecosystem.

Sports modes

The number of types of sports training supported by the smartwatch. The more of them, the wider the coverage of the potential audience is provided by a wearable gadget on the wrist.

The most common sports modes include running, walking, cycling, swimming, elliptical exercise, and so on. The quantity and quality of data for different sports depends on the technical level of equipment of a particular device. While some models only record heart rate and roughly calculate the number of calories burned, other smartwatches evaluate the effectiveness of a workout using a detailed list of data and even draw a conditional run track based on information from GPS satellites.

Swimming mode

A training programme for waterproof smartwatches or fitness trackers with water sports disciplines support. In swimming mode the wearable gadget determines the speed, distance and time of the swim, advanced instances of smartwatches measure the number of laps in the pool, calculate the frequency and efficiency of strokes in certain swimming styles. A personal assistant on the wrist evaluates the performance of water workouts and often makes recommendations to improve their effectiveness.

Navigation

This block contains both various navigation systems ( GPS, Galileo) and auxiliary features for them ( aGPS, GPS tracking, maps, compass, altimeter , barometer). More about them:

— GPS module. GPS satellite navigation module built right into the watch/tracker. The initial purpose of such a module is to determine the current geographic coordinates; but how this information will be used depends on the specific type and model of the gadget. For example, in some devices GPS is used only for measuring the distance traveled and/or speed of movement, while more advanced models support full navigation and are equipped with built-in maps. In addition, this feature is almost mandatory in children's beacons (see "Type") — it is GPS that is responsible for determining the location of the child.

— aGPS. An auxiliary feature that allows you to speed up the start of the main GPS receiver. To work for its main purpose, such a receiver must update data on the location of navigation satellites; Obtaining this data in the classical way, directly from the satellites themselves, can take quite a long time (up to several minutes). This is especially true for the so-called "cold start" — when the receiver starts up after a long break in opera...tion, and the data stored in it has become completely outdated. aGPS (Assisted GPS) allows you to receive up-to-date service information from a mobile operator — from the nearest base station (this feature is supported by most operators nowadays). This can greatly speed up the startup process.

— GLONASS. This system is a Russian alternative to the American GPS. However it provides somewhat less accuracy, so GLONASS support is usually provided in addition to the GPS module. Simultaneous use of two systems, in turn, improves positioning accuracy.

— Galileo. European satellite navigation system, created as an alternative to the American GPS. Note that it is under the control of civilian departments, not the military. With a full fleet of 24 active satellites, the system gives an accuracy of up to 1 m in public mode and up to 20 cm with the GHA service. Working in conjunction with GPS, the Galileo system provides a more accurate position measurement, especially in densely populated areas.

— Maps. The feature of displaying topographic maps of the area with heights, relief and types of vegetation on the clock screen. Preinstalled maps are used for visual GPS navigation without being tied to a smartphone. Often, the ability to display maps is implemented in tactical smartwatches with a focus on tourism.

— GPS tracking. Many watches with the possibility of laying routes have the feature of guiding by the GPS track. At the same time, the wearable gadget acts as a navigator around the area, showing the route on the screen and suggesting where it is necessary to turn in one direction or another. Some smartwatches with a pronounced touristic bias also have a “Return Route” programme that allows you to go back along an already traveled route. In GPS tracker mode, trackpoints are usually recorded automatically based on the selected fixing interval. You can also mark a track point manually at any time.

— Compass. A classic compass is a device that indicates the direction to the cardinal points. Wearable gadgets usually use an electronic compass — a miniature magnetic sensor, the data from which, if necessary, are displayed on the display.

— Altimeter. A feature that allows you to determine the current altitude of the user's location. Note that the principle and format of the altimeter may be different. So, some models use barometer data for height measurements, others use information from a GPS sensor; the height itself can be determined relative to sea level, relative to some reference point, or in any of these ways, at the choice of the user. These details should be clarified separately.

— Barometer. A feature that allows you to determine the current atmospheric pressure. One of the applications of the barometer is weather forecasting: for example, a sharp drop in pressure usually signals the approach of bad weather. In addition, information from this sensor can be used to operate the altimeter (see above); and even if the gadget does not have an altimeter, the height difference between two points on the ground can be easily calculated from the pressure difference between them.

Size

The size of the display installed in the gadget; for round screens, respectively, the diameter is indicated.

A larger screen, on the one hand, is more convenient to use, on the other hand, it significantly affects the dimensions of the entire device, which is especially critical for wearable gadgets. Therefore, manufacturers choose the display size in accordance with the purpose and functionality of each specific model — so that there is enough space on the screen and the device itself is not too bulky.

It is also worth mentioning that screens with a similar size may have different aspect ratios. For example, traditional smartwatches are usually equipped with square or round panels, while in fitness trackers, screens are often made elongated in height.

Screen resolution

Screen size in dots (pixels) horizontally and vertically. In general, this is one of the indicators that determine the image quality: the higher the resolution, the clearer and smoother the picture on the screen (with the same size), the less noticeable are the individual dots. On the other hand, an increase in the number of pixels affects the cost of displays, their power consumption and requirements for a hardware platform (more powerful hardware is required, which itself will cost more). In addition, the specifics of using smartwatches is such that there is simply no need to install high-resolution screens in them. Therefore, modern wrist accessories use displays with a relatively low resolution: for example, 320x320 with a size of about 1.6" is considered quite sufficient even for premium watches.

Watch face protection

The material from which the transparent cover of the display is made.

Plastic. Inexpensive, moreover, quite durable and impact-resistant material: even with a strong impact, the plastic is more likely to crack than crumble into fragments. At the same time, scratches easily appear on such a surface, and over time it inevitably becomes cloudy. Because of this, plastic is found predominantly in inexpensive wearable gadgets.

Glass. In this case, it can mean both classic silicate glass (the same as, for example, in windows), and some original types of impact-resistant glass that are not related to Gorilla Glass(see below). Regular glass costs more than plastic, but not by much, and it looks better and stays clear longer due to its scratch resistance. The main disadvantages of this material are fragility and a tendency to crumble into sharp fragments upon impact. Impact-resistant glass types are devoid of this drawback to one degree or another, but they are also more expensive. According to the price category of the gadget, you can quite accurately determine what kind of glass it uses — ordinary or shock-resistant.

Sapphire. The coating made of synthetic sapphire is used exclusively in premium-class gadgets — this is due to the complexity of its production and, accordingly, the high cost. On the practical s...ide, sapphire is extremely scratch resistant (it is only possible to scratch such glass with a diamond or special tools), but at the same time it is fragile and easily breaks from impact.

— Gorilla glass. A family of shock-resistant glass types created by Corning and widely used in modern electronics, including wearable gadgets. In addition to strength, Gorilla Glass is also distinguished by good scratch resistance, while being relatively inexpensive (by the standards of such a coating), which has led to their popularity. However, the specific properties of such glass depend on its version; Here are the options that are relevant for modern wearable devices:
  • Gorilla Glass v3. The oldest current version was released in 2013. Nevertheless, even such a coating is noticeably superior to traditional glass (not to mention plastic) in terms of transparency and scratch resistance.
  • Gorilla Glass v4. Version released in 2014. A key feature was that the development of this coating focused on impact resistance (whereas previous generations focused mainly on scratch resistance). As a result, the glass turned out to be twice as strong as in version 3, despite the fact that its thickness was only 0.4 mm.
  • Gorilla Glass SR+. The first version of Gorilla Glass, designed specifically for smartwatches and other miniature wearable gadgets; presented in 2016. According to the creators, the scratch resistance of such coatings approaches those of sapphire glass while maintaining the main advantages of Gorilla Glass — high strength and transparency. In general, for this material, superiority over "alternative options" is claimed by 70% in terms of strength specs and by 25% in terms of optical properties.
  • Gorilla Glass DX. Another type of glass, specially designed for wearable devices. It was released in 2018 at the same time as the DX+ version (see below). Of the key improvements in Gorilla Glass DX, in particular, increased anti-reflective properties and an increase in the contrast level of the visible image by 50% are announced; the latter, among other things, allows you to reduce the actual brightness and, accordingly, the power consumption of screens without compromising image quality, which is especially important for miniature wearable devices. And this material differs from the DX+ type coating, on the one hand, by lower scratch resistance, and, on the other hand, by higher anti-reflective specs.
  • Gorilla Glass DX+. Almost the same as the original version of DX, related to the same specialization — wearable wearable gadgets and other miniature devices. At the same time, DX + has a higher scratch resistance, but has slightly worse anti-reflective specs. Otherwise, these types of coverage are almost identical.

Bezel-less

Bezel-less are displays in which the case or bezel does not occupy the usable area of the front panel, or it is minimized. In terms of design, bezels have both pros and cons. One of the most important reasons for adding substantial bezels to your screen is physical protection. The bezel-less display is very easy to scratch or damage when dropped. On the other hand, the frame takes up space on the screen, and this is one of the reasons why the frames in modern smartwatches are minimized, making the gadget more compact and stylish.
Honor Watch GS Pro often compared