Dark mode
United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Smartwatches & Trackers

Comparison Garmin Epix Pro Gen 2 Sapphire 51mm vs Garmin Fenix 7X Sapphire Pro Solar

Add to comparison
Garmin Epix Pro Gen 2  Sapphire 51mm
Garmin Fenix 7X  Sapphire Pro Solar
Garmin Epix Pro Gen 2 Sapphire 51mmGarmin Fenix 7X Sapphire Pro Solar
Compare prices 11Compare prices 14
TOP sellers
Main
Advanced training and recovery metrics. Connect to Connect IQ via Wi-Fi (download TopoActive maps, watch faces, etc.). Touch screen in all parts of the interface. Autonomy optimization with multi-frequency GPS with Satiq technology.
Differences from standard versions: the presence of a flashlight, 32 GB of memory and multi-frequency GPS in all modifications; new optical heart rate sensor Garmin Elevate V5, fast charging (~60 min instead of 120 min). In the Pro version, the case is available in 3 sizes (like Fenix).
Advanced training and recovery metrics. Connect to Connect IQ via Wi-Fi (download TopoActive maps, watch faces, etc.). Touch screen in all parts of the interface. Autonomy optimization with multi-frequency GPS with Satiq technology.
They differ from the standard version by the presence of a flashlight, 32 GB of memory, multi-frequency GPS and a solar battery in all modifications; new optical heart rate sensor Garmin Elevate V5, fast charging (about 60 minutes instead of 120 minutes).
Typesmartwatchsmartwatch
InterfaceBluetooth v 5.0Bluetooth v 5.0
ANT+
Telephony
Calls and alerts
notifications
sound signal
vibration
notifications
sound signal
vibration
Sports and tourism
Possible measurements
heart rate monitor
blood oxygen level
ambient temperature
number of steps
distance traveled
movement speed
calories burned
activity time
sleep tracking
stress level
women's calendar
heart rate monitor
blood oxygen level
ambient temperature
number of steps
distance traveled
movement speed
calories burned
activity time
sleep tracking
stress level
women's calendar
Swimming mode
Navigation
GPS module
GLONASS
Galileo
maps
GPS track guidance
compass
altimeter (altitude)
barometer (pressure)
GPS module
GLONASS
Galileo
maps
GPS track guidance
compass
altimeter (altitude)
barometer (pressure)
Display
Touch screen
Typecolourcolour
Display typeAMOLEDtransflective
Size1.4 "1.4 "
Screen resolution454x454 px280x280 px
PPI324 ppi200 ppi
Watch face protectionsapphiresapphire
Hardware
Memory storage32 GB32 GB
Extra features
built-in player
light sensor
Wi-Fi
NFC
Garmin Pay contactless payment
accelerometer
gyroscope
full-fledged flashlight
built-in player
light sensor
Wi-Fi
NFC
Garmin Pay contactless payment
accelerometer
gyroscope
full-fledged flashlight
Power source
Device chargingproprietary connectorproprietary connector
Source of powerLi-IonLi-Ion
Operating time (normal mode)31 days28 days
Battery life (GPS)82 h89 h
Solar battery
Case and strap
Materialplasticplastic
Strapquick releasequick release
Strap Options
rubber/silicone
rubber/silicone
Clasp optionsclassic buckleclassic buckle
Band Width26 mm26 mm
Wrist strapsilicone: 127 – 210, leather: 135 – 213, fabric: 135 – 213, metal: 135 – 225 mmsilicone: 127 – 210, leather: 135 – 213, fabric: 135 – 213, metal: 135 – 225 mm
General
Protection rating100 WR (10 ATM)100 WR (10 ATM)
MIL-STD-810
Dimensions (without strap)51x51x14.9 mm51x51x14.9 mm
Weight88 g89 g
Color
Added to E-Catalogjune 2023may 2023

Display type

— TFT. The simplest type of liquid crystal panel used in colour displays. They provide a relatively low, but generally sufficient image quality, while they are much cheaper than more advanced options. This type does not require backlight — more precisely, the backlight is part of the screen itself and turns on with it. Of the unequivocal disadvantages, it is worth noting that many TFT panels have rather limited viewing angles; however, as technology improves, this drawback is gradually eliminated.

— IPS. A variety of LCD panels created in an attempt to eliminate the shortcomings of TFT. There are many subspecies of IPS panels, but they all feature high colour reproduction quality, excellent brightness and wide viewing angles. The disadvantage of this option is the relatively high cost.

OLED. In this case, we mean the technology used to create the simplest monochrome displays. In such screens, each segment that makes up the image is a separate LED, which eliminates the need for external illumination (and even the display itself can be used as a flashlight).

AMOLED. Screens based on a panel of active organic light emitting diodes. Similar to various types of TFT, this technology allows the creation of high-resolution colour displays. Its key feature is that the screen doe...s not require a separate backlight system — in AMOLED panels, each pixel glows independently, resulting in somewhat lower power consumption. At the same time, such screens are distinguished by good colour reproduction quality, excellent brightness and wide viewing angles, however, they are much more expensive than TFT.

Super AMOLED. An enhanced version of the AMOLED technology described above, delivering more expansive colour reproduction and brightness, as well as improved touch accuracy and speed, all at a thinner display and lower power consumption. In addition, the degree of reflection of external light is reduced, such a panel gives less glare and is better visible in sunlight.

— E-Ink (E-Paper). Displays made using "electronic paper" technology; in addition, this category also includes screens such as Memory LCD. The classic E-Ink screen is black and white, does not have a backlight (however, it can be built into particular gadgets), has a very low refresh rate and is poorly suited even for stopwatches, not to mention videos or animated pictures. On the other hand, "electronic paper" is perfectly visible in bright light and has a very low power consumption: it requires electricity only when the image is changed, while a still image remains visible even when the power is completely turned off. Memory LCD screens, in turn, with the same advantages, are almost as good as classic LCD panels in terms of refresh rate, but for a number of reasons they are not widely used.

Transflective. A specific type of LCD panels that can work both due to its own backlight and due to reflected light. In bright external light (for example, in the sun), such a screen effectively reflects it and does not require a separate backlight — however, it is still included in the design and turns on in low light. This type of operation can significantly reduce power consumption compared to traditional LCD screens, where the image is not visible without backlight; in addition, good visibility in bright light is also an important advantage. The main disadvantage of panels of this type is their high cost; in addition, they are made mostly monochrome.

- LTPO. OLED and AMOLED matrices with an adaptive refresh rate that varies over a wide range based on the tasks performed. When rendering dynamic frames, screens with LTPO technology automatically raise the refresh rate to the maximum values, while viewing static images, they automatically reduce it to the minimum. At the heart of the technology is a traditional LTPS substrate with a thin TFT oxide film on top of the TFT base. Dynamic control of the refresh rate is provided by controlling the electron flow. The key benefit of LTPO screens is their reduced power consumption.

Screen resolution

Screen size in dots (pixels) horizontally and vertically. In general, this is one of the indicators that determine the image quality: the higher the resolution, the clearer and smoother the picture on the screen (with the same size), the less noticeable are the individual dots. On the other hand, an increase in the number of pixels affects the cost of displays, their power consumption and requirements for a hardware platform (more powerful hardware is required, which itself will cost more). In addition, the specifics of using smartwatches is such that there is simply no need to install high-resolution screens in them. Therefore, modern wrist accessories use displays with a relatively low resolution: for example, 320x320 with a size of about 1.6" is considered quite sufficient even for premium watches.

PPI

The density of dots on the screen of the gadget, namely, the number of pixels that are on each inch of the panel vertically or horizontally.

The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.

Operating time (normal mode)

The time that the gadget can work on one battery charge (or the supplied battery) in normal use.

Normal mode, as a rule, means working with a relatively low load. At this time, the display can display some data, and basic functions can also work (counting steps, periodically checking heart rate, etc.), but in any case, power consumption is low. Therefore, the operating time in normal mode can be quite impressive, up to several weeks, or even months. However, when choosing, it doesn’t hurt to also pay attention to the stated time in active mode (see below) — especially if a long operating time is critical, or you plan to use the gadget intensively. The actual autonomy of the device will most likely be somewhere in between these two values, depending on the actual load. If only the time in normal mode is indicated for the gadget, you should choose with a certain reserve.

Battery life (GPS)

The time that the gadget is able to work on one charge of the battery (or supplied battery) when using a GPS sensor.

This parameter is specified mainly for high-end tourist watches designed for experienced travelers, military, rescuers, divers, pilots, etc. Such devices use advanced GPS receivers, which themselves can consume quite a significant amount of energy; in addition, the operation of the receiver is inevitably accompanied by the use of other features — transferring navigation data to another device (usually via Bluetooth), working with its own built-in maps, etc. Therefore, the battery life while using GPS turns out to be rather modest — it can be significantly less time in active and even less in normal mode (for both, see above).

We also remind that the battery life mentioned in specs is approximate — in fact it may differ (in one direction or another, depending on the use scenario). Nevertheless, it is quite possible to evaluate the actual capabilities of the watch and compare them with each other: the difference in the claimed battery life usually proportionally corresponds to the difference in practical battery life.

Solar battery

A watch with a special photocell that converts the energy of sunlight into electrical energy. Sunlight also commonly refers to artificial lighting emitted by fluorescent lamps and other light sources. The solar battery can't free you from charging the smartwatch, however, it significantly extends the operating time of the wearable gadget.

Weight

In most cases, the weight of the watch body itself is indicated as the weight of the model, since the strap is removable and can be replaced with another one. However, there are also models when the weight is presented with an included strap. Anyway, if the manufacturer indicates a specific method of measuring weight (with or without a strap), we add this information.
Garmin Epix Pro Gen 2 often compared
Garmin Fenix 7X often compared