United Kingdom
Catalog   /   Sound & Hi-Fi   /   Portable Audio   /   Headphone Amplifiers

Comparison FiiO BTR5 2021 vs FiiO BTR5

Add to comparison
FiiO BTR5 2021
FiiO BTR5
FiiO BTR5 2021FiiO BTR5
from £114.99 
Outdated Product
Compare prices 1
TOP sellers
Main
Support for AAC, SBC, aptX, aptX LL, aptX HD, LDAC codecs. Battery 550 mAh. NFC support.
Support for AAC, SBC, aptX, aptX LL, aptX HD, LDAC codecs. Battery 550 mAh. NFC support.
Typeportableportable
DACESS ES9219C (2 pcs.)
Number of channels1 шт1 шт
Specs
DAC sample rate384 kHz384 kHz
DAC bit depth32 bit32 bit
Headphone impedance
16 – 150 Ohm /balanced output/
16 – 150 Ohm /balanced output/
Power (32 Ohm)
240 mW /balanced output/
220 mW /balanced output/
Power (16 ohm)
240 mW /balanced output/
Frequency range
20 – 40000 Hz /LDAC/
Signal to noise ratio
122 dB /balanced output/
122 dB /balanced output/
Coef. harmonic distortion
0.002 % /balanced output/
0.002 % /balanced output/
Functions and features
Bluetoothv5.0v5.0
Codec support
aptX Low Latency
AAC
LDAC
aptX Low Latency
AAC
LDAC
Gain Control
Level adjustmentbuttonsbuttons
Connectors
Headphone outputs
1x mini-Jack (3.5 mm) шт
1x mini-Jack (3.5 mm) шт
Power source
Power type
battery powered
USB powered
battery powered
USB powered
Battery life
9.5 h /unbalanced output/
9 h
General
Screen
Metal body
Dimensions72x32x11 mm72x32x11 mm
Weight43 g44 g
Added to E-Catalogdecember 2021january 2020

DAC

DAC model — a digital-to-analogue converter installed in the amplifier.

In accordance with the name, the DAC is responsible for converting a digital signal (for example, coming to the optical input or USB, see "Inputs") into an analogue format, with which the amplifier directly works. The presence of such a converter in an external "amplifier" is important, given the fact that many popular signal sources — such as smartphones or built-in sound cards — are equipped with fairly simple and inexpensive DACs with low sound quality; on external equipment, this quality can be much higher. And the quality of the conversion and, accordingly, the characteristics of the output sound directly depend on the characteristics of the DAC: even the most advanced power amplifier will not “save” a signal converted with significant errors. Accordingly, knowing the converter model, you can find detailed data on it — from official specifications to practical reviews — and evaluate how an amplifier with such a module meets your requirements.

Power (32 Ohm)

Rated power delivered by the amplifier when connected to headphones (or other load) with an impedance of 32 ohms.

By itself, the rated power is the highest average power that the device is capable of delivering for a long time without overloading; individual "jumps" of the signal may have a higher level, but in general, the capabilities of the amplifier are determined primarily by this indicator. At the same time, the physical features of the audio equipment are such that the actual power delivered to the load will depend on the resistance of this load. Therefore, in the characteristics of headphone amplifiers, data is often given for different impedance values. A resistance of 32 ohms allows you to achieve quite good sound quality by the standards of low-impedance headphones, while it is not so high as to create problems for the built-in amplifiers of smartphones and other compact equipment. Therefore, most wired general-purpose (non-professional) headphones are made precisely in this resistance, and if the amplifier characteristics generally indicate power for a certain impedance, then most often it is for 32 ohms.

In the most modest modern amplifiers, the output power at this impedance is between 10 and 250 mW ; values of 250 – 500 mW can be called average, 500 – 100 mW are above average, and the most powerful models are capable of delivering ...f="/list/788/pr-19429 /">more than 1000 watts. The choice for specific power indicators depends on the sensitivity of the headphones used, as well as on the sound pressure level (in other words, loudness), which is planned to be achieved by the amplifier. There are special formulas and tables that allow you to calculate the minimum required power for a certain volume at a given sensitivity of the "ears". However, in the case of 32-ohm headphones, it does not always make sense to "get into the calculations." For example, the mentioned 10 mW is more than enough to drive headphones with a modest sensitivity of 96 dB to a volume of more than 105 dB — this is already enough to listen to music at quite a decent volume. And in order to achieve the same "ears" level of 120 dB, which provides a full perception of the loudest sounds (like explosions, thunder, etc.), you need to give out a power slightly higher than 251 mW. So in fact, you have to pay attention to this characteristic and resort to calculations / tables mainly in those cases when you have to use 32 Ohm headphones with a relatively low sensitivity — 95 dB or less.

Power (16 ohm)

Rated power delivered by the amplifier when connected to headphones (or other load) with an impedance of 16 ohms.

By itself, the rated power is the highest average power that the device is capable of delivering for a long time without overloading; individual "jumps" of the signal may have a higher level, but in general, the capabilities of the amplifier are determined primarily by this indicator. At the same time, the physical features of the audio equipment are such that the actual power delivered to the load will depend on the resistance of this load. Therefore, in the characteristics of headphone amplifiers, data is often given for different impedance values. And 16 ohms is a rather low resistance indicator even for low-resistance "ears"; such characteristics are provided mainly in general-purpose headphones designed for pocket gadgets with low-power amplifiers.

As for the choice for specific power values, it depends on the sensitivity of the headphones used, as well as on the sound pressure level (in other words, loudness) that is planned to be achieved by the amplifier. There are special formulas and tables that allow you to calculate the minimum required power for a certain volume at a given sensitivity of the "ears". At the same time, it is worth noting that at 16 ohms, even the most low-power modern “amps” are capable of delivering about 20 mW — this is enough to drive headphones with a sensitivity of 88 dB (far from the highest figure) to a vo...lume of 105 dB (the minimum value recommended for a complete listening experience). And in most amplifiers, when operated with a given impedance, they provide much more power. So paying attention to this point and going into the calculations makes sense mainly either with low sensitivity of the "ears" (less than the mentioned 88 dB), or if you want to end up with a level above 105 dB.

Frequency range

Frequency range supported by the output amplifier; in other words, the range that this model is capable of delivering to headphones or another analogue audio device.

Theoretically, the wider the frequency range — the richer the sound of the amplifier, the lower the likelihood that the lower or upper edge of audible frequencies will be “cut off”. However, when evaluating this parameter, several nuances should be taken into account. Firstly, the average person is able to hear frequencies from 16 to 22,000 Hz, and with age, these boundaries gradually narrow. However, headphone amplifiers often have wider operating ranges, and they are very impressive — for example, for some models, a set of frequencies from 1 Hz to 60,000 Hz, or even up to 100,000 Hz, is claimed. Such characteristics are a kind of "side effect" from the use of high-end sound processing circuits; from a practical point of view, these numbers do not make much sense, but they are an indicator of the high class of the amplifier and are often used for advertising purposes.

The second nuance is that any headphones also inevitably have their own frequency limitations — and these limitations can be more significant than in an amplifier. Therefore, when choosing, it's ok to take into account the characteristics of the headphones: for example, you should not specifically look for an amplifier with an upper frequency limit of the full 22 kHz, if in the headphones that you plan to use with it, th...is limit is only 20 kHz.

In conclusion, also note that an extensive frequency range in itself does not guarantee high sound quality — it largely depends on other factors (frequency response, distortion level, etc.).

Gain Control

The presence of the Gain Control function in the amplifier — that is, adjusting the input sensitivity, or, in other words, adjusting the degree of gain. The higher the "gain" — the higher the final volume of the sound (with the same characteristics of the headphones and the input signal).

Most often, modern headphone amplifiers provide the simplest two-stage (High / Low) or three-stage (High / Mid / Low) sensitivity adjustment. However, even such a setting provides additional features for coordinating the signal source, amplifier and headphones. For example, the ability to increase Gain may come in handy when changing headphones to higher-impedance or less sensitive ones: a weak gain sometimes does not allow you to achieve the desired volume on such “ears”. Conversely, for sensitive headphones, a high degree of gain may be excessive.

Battery life

Operating time of the battery-powered amplifier (see "Type of power") on one battery charge.

Note that this indicator is rather conditional, since the characteristics most often indicate a certain average operating time: at relatively low power, with minimal use of additional functions, etc. So in fact, the battery life may differ from the claimed one by one , and the other side — depending on the features of the application. Nevertheless, in general, this parameter well illustrates the real capabilities of the device, according to the claimed operating time, it is quite possible to evaluate the overall battery life of the amplifier and compare it with other models: the differences in the claimed figures will most likely correspond to the differences in the real battery life (ceteris paribus ).
FiiO BTR5 2021 often compared
FiiO BTR5 often compared