United Kingdom
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   3D Printers

Comparison Creality Ender 3 vs Wanhao Duplicator i3

Add to comparison
Creality Ender 3
Wanhao Duplicator i3
Creality Ender 3Wanhao Duplicator i3
from £165.00 
Expecting restock
from $533.60 up to $632.00
Outdated Product
TOP sellers
Print technologydeposition modeling (FDM/FFF)deposition modeling (FDM/FFF)
Filament materialABS, PLA, TPUPLA, ABS, PVA, Nylon
3D model file format.stl , .obj, .gcode.gcode
Compatible softwareMarlinRepetier Host, Cura, Simplify3D
Object dimensions (HxWxD)250x220x220 mm180x200x200 mm
Object volume12 L7.2 L
Printing process
Min layer thickness100 µm100 µm
Print speed180 mm/s100 mm/s
Nozzle diameter0.4 mm0.4 mm
Min thread diameter1.75 mm1.75 mm
Heating bed temperature110 °C100 °C
Extruder (nozzle) temperature255 °C260 °C
Number of extruders11
More features
Features
heated bed
heated bed
Data transfer
card reader
 
PC connection (USB)
card reader
USB
 
General
LCD display
+
+
Power360 W
Dimensions44x41x46.5 cm40x41x40 cm
Weight8 kg10 kg
Added to E-Catalogseptember 2019august 2015

Filament material

 

3D model file format

File format for 3D models that the printer can handle.

Projects of 3D models are created using special programs (CAD — computer-aided design systems), while such programs can use different file formats, often incompatible with each other. This information can be useful both for selecting CAD for a specific printer model, and for assessing whether ready-made projects are suitable for printing on the selected model.

Among the most common file extensions nowadays (in alphabetical order) are — .3ds, .amf, .ctl, .dae, .fbx, .gcode, .obj, .slc, .stl, .ply, .vrml, .zrp.

Compatible software

Software for building models which the printer is optimally compatible with. The software used for 3D printing includes both CAD (automatic design systems for creating models) and slicers (software that break a three-dimensional model into separate layers, preparing it for printing). Therefore, this paragraph often indicates a whole list of software products.

Note that the degree of optimization in this case may be different: some models are compatible only with the claimed programs, but many printers are able to work with third-party CAD systems. However, it is best to choose software directly claimed by the manufacturer: this will maximize the capabilities of the printer and minimize the chance of failures and “inconsistencies” during operation.

Object dimensions (HxWxD)

The maximum dimensions of a product that can be printed on a 3D printer in one cycle.

The larger the dimensions of the model, the wider the choice for the user, the greater the variety of sizes available for printing. On the other hand, "large-sized" printers take a lot of space, and this parameter significantly affects the cost of the device. In addition, while printing a large model with FDM/FFF (see "Printing Technology"), larger nozzles and higher print speeds are desirable — and these features negatively affect detailing and the print quality of tiny objects. Therefore, while choosing, you should not aim the utmost maximum sizes — you should realistically assess the dimensions of the objects that you're going to print, and proceed from these data (plus a small margin in case of unexpected moments). In addition, we note that a large product can be printed in parts, and then piece these parts together.

As for the specific values of each size, all three main dimensions have the same division into nominal categories (small size, medium, above average and large): — height — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — width — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — depth — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm.

Object volume

The largest volume of an object that can be printed on a printer. This indicator directly depends on the maximum dimensions (see above) — usually, it corresponds to these dimensions multiplied by each other. For example, dimensions of 230x240x270 mm will correspond to a volume of 23*24*27 = 14,904 cm³, that is, 14.9 litres.

The exact meaning of this indicator depends on the printing technology used (see above). These data are fundamental for photopolymer technologies SLA and DLP, as well as for powder SHS: the volume of the model corresponds to the amount of photopolymer/powder that needs to be loaded into the printer to print the product to the maximum height. If the size is smaller, this amount may decrease proportionally (for example, printing a model at half the maximum height will require half the volume), however, some printers require a full load regardless of the size of the product. In turn, for FDM/FFF and other similar technologies, the volume of the model is more of a reference value: the actual material consumption there will depend on the configuration of the printed product.

As for specific figures, the volume up to 5 litres can be considered as small, from 5 to 10 litres — medium, more than 10 litres — large.

Print speed

The print speed provided by an FDM/FFF type 3D printer (see "Print Technology").

The print speed in this case is the maximum amount of material that can pass through a regular nozzle per second. The higher this value (150 mm/s, 180 mm/s , 200 mm/s and above), the faster the printer is able to cope with a particular task. Of course, the actual production time will depend on the configuration of the printing model and the print settings, but other things being equal, a printer with a higher speed will operate faster. On the other hand, an increase in speed requires an increase in heating power (because the extruder has time to melt the required volume of material), blowing power (otherwise the plastic will not have time to solidify normally), as well as stricter control of the movement of the extruder (to compensate for inertia from fast movements). So, generally, this spec strongly depends on the price category and specialization of the device, and it’s worth looking specifically for a “fast” model in cases where the speed of production is critical. Otherwise, a 100 mm/s model or 120 mm/s is sufficient, or even less.

Heating bed temperature

Maximum heating temperature in 3D printers with heated bed (for more details, see the relevant paragraph). The higher the limit, the more varieties of plastic can be used for printing. So, models with heating up to 100 °C are suitable for 3D printing with PLA plastic, with a bed temperature of 100 to 120 °C — for working with ABS plastic and nylon, high-temperature ones — allow the use of polycarbonate and refractory varieties of plastic.

Extruder (nozzle) temperature

The heating temperature provided by the extruder in an FDM/FFF or PJP printer (see Printing Technology) .

Compatibility with this or that printed material directly depends on this parameter. For example, for PLA plastic, temperature range 180 – 230 °C is required, for ABS it will require 220 – 250 °C, and for polycarbonate — at least 270 °C. The temperature definitely should not be too low — otherwise the material simply cannot melt normally. But the margin in most cases is quite acceptable — for example, many PLA-compatible models operate at temperatures of about 250 °C, or even 280 °C.

Thus, a higher operating temperature enhances the printer's capabilities and its compatibility with various types of thermoplastics. On the other hand, the more the material is heated, the worse it cools down; to ensure sufficient solidification efficiency, one must either reduce the printing speed (which increases the time required) or increase the blowing intensity (which affects the cost). Well, anyway, while choosing, you should focus primarily on filaments, which compatibility is directly indicated in the specs.

Data transfer

Data transfer methods provided in the 3D printer design. We are talking primarily about data relating to the model being printed (from which the printer directly prints), in some cases also about setting up the device and other ways of interacting with it; For more details, see individual list items.

As for specific options, in addition to the traditional communication to a PC via USB or USB type C, modern printers may provide data transfer methods such as a card reader, its own USB port, a network communication via LAN, as well as a wireless communication via Wi-Fi. Here are the features of each of these options:

- Card reader. The printer has its own memory card slot. Most often designed to work with popular SD cards; however, even such media have several varieties, so it would not hurt to check the range of supported cards separately. In any case, the main purpose of this function is direct printing: by installing a card with a recorded project file in the printer, you can make a model without even connecting the device to a computer. There may be other ways to use the card reader - for example, copying materials from a model scanner to external media (see “Functions and capabilities”). Note that this function is convenient mainly for exchanging dat...a with a laptop - a slot for memory cards is available in almost any modern laptop.

- USB. Own USB connector on the printer body. It is used similarly to the card reader described above - for working with external media, in this case “flash drives” and other similar devices. The methods for using the USB port are also similar - mainly direct printing, but other options are also possible (copying data from a scanner, updating firmware, etc.).

— USB type C. Availability of a USB type C port in the interface communication shelf of the device. Such connectors are smaller in size compared to classic USB, and they also have a convenient double-sided design that allows you to connect the plug to either side. USB type C is supposed to be used to connect a 3D printer to a computer or mobile gadgets for managing and transferring printed files. At the same time, this connector can be used to connect external storage media.

- Wi-Fi. A wireless communication module that can be used both to connect the printer to local networks and for direct communication with tablets, laptops and other gadgets. Specific capabilities should be clarified separately, but here we note that a network communication allows you to use the printer as a common device for all computers on the local network and even access it from the Internet (although the latter may require specific settings). At the same time, Wi-Fi is a more convenient alternative to a wired LAN (see below), as it allows you to do without laying wires. As for direct communication with another gadget, this option is less common. It usually provides the ability to send projects for printing and access to basic settings; and to use such control, you may need to install a special application.

— Connection to PC (USB). Connecting to the USB port of a PC or laptop is the most popular way to directly connect a 3D printer to similar devices. The vast majority of modern computers are equipped with ports of this type, and even connectors of the outdated version of USB 2.0, not to mention newer standards, are enough to work with a printer. The communication itself can be used both to send print jobs and to control operating parameters - and it is through a PC/laptop that detailed settings that are not accessible through the screen on the printer itself are usually implemented. In addition, if necessary, you can share access to the unit via a computer via a local network or the Internet - even if the printer itself does not have a LAN connector or a Wi-Fi module. This is much more difficult to organize and not as convenient as using a network model with a direct communication to the local area, but it eliminates the need to overpay for additional connectivity options in the printer itself.

— Connection to PC (LAN). Connection to external devices via LAN - a standard connector for wired communication to computer networks. Actually, such a communication is intended mainly for using the printer as a network device - when access to printing and settings can be obtained from different computers on a local network, or even via the Internet. LAN is less convenient to connect than Wi-Fi, as it requires cabling, but this communication is more reliable and does not suffer from the presence of a large number of wireless devices nearby. In addition, the cable can be useful if the Wi-Fi router or access point does not reach the printer location.
Note that the standard use of LAN involves connecting to a network router, but a direct communication to a computer is also possible. The second option allows you to use this connector similarly to the USB described above - that is, only for one computer; but if this computer is connected to a local network and/or the Internet, you can also configure network access to the printer.
Creality Ender 3 often compared