United Kingdom
Catalog   /   Tools & Gardening   /   Measuring tools   /   Laser Measuring Tools

Comparison Bosch GLM 40 Professional 0601072900 vs Bosch PLL 360 Set 0603663001

Add to comparison
Bosch GLM 40 Professional 0601072900
Bosch PLL 360 Set 0603663001
Bosch GLM 40 Professional 0601072900Bosch PLL 360 Set 0603663001
Compare prices 6
from £175.00 
Outdated Product
TOP sellers
Main
Reference planes for measurement — 3
Typelaser distance meterlaser level
Suitable for360° area
Specs
Measurement range0.15 – 40 m10 m
Accuracy0.4 mm/m
Accuracy1.5 mm
Self-leveling angle4 °
Leveling time4 с
Reference points1
Operating temperature-10 – 45 °C5 – 40 °C
Tripod thread1/4"
Auto power off
Auto power off5 min
Laser auto-off20 с
Laser characteristics
Diode emission635 nm635 nm
Laser colourredred
Laser class22
Vertical projections1
Horizontal projections1
Beam angle (horizontal)360 °
Point projections1
Features
Compensator locking
Displayb/w with backlit
Distance meter functions
area / volume measurement
indirect measurements (Pythagorean)
add / subtract
continuous measurement (tracking)
last measurements memory
10
 
 
 
 
 
 
General
IP protection rating54
Power source2xAAA4хАА
Operating time12 h
Number of measurements5000
In box
 
case / pouch
non chargeable batteries
tripod
case / pouch
 
Dimensions41x105x24 mm125x85x70 mm
Weight100 g500 g
Added to E-Catalogjuly 2015april 2014

Type

General type of device.

Modern levels differ primarily in their operating principle: they are optical(traditional or digital) and laser(conventional and rotary). At the same time, the specific specialization depends on the principle of operation - laser and optical devices differ in purpose and application. In turn, the main function of rangefinders is clear from the name - determining distances. The difference here also lies in the principle of operation: most modern rangefinders are laser, but there are also more specific ultrasonic devices.

Here is a more detailed description of each of these varieties:

— Optical level. Levels have a traditional design - in the form of a kind of specialized telescope mounted on a tripod and supplemented with measuring scales (including in optics, in the operator’s field of view), as well as devices for horizontal alignment (compensators, levels). Such devices are used to determine height differences using the so-called geometric leveling method, for which leveling rods are also used - special strips with measuring scales installed vertically. And the general principle of this method is as follows: the operator points the level’s telescope, set horizontally, at the vertical leveling staff, and determines...which mark on the staff is opposite the main “sighting mark” of the level - this mark will correspond to the actual height of the device. More information about this method, including specific measurement techniques, can be found in special sources. Here we note that optical levels are excellent primarily for working in large areas of open areas; they are used mainly in such fields as geodesy and cartography. But for work where you have to deal with relatively short distances (primarily construction in small areas), such devices are not suitable; However, they are quite complex and expensive, especially compared to laser devices. So, relatively few optical levels are produced nowadays.

— Digital level. In fact, it is an advanced version of the optical levels described above. Externally, they differ primarily in that instead of a regular telescope, such devices are equipped with a digital camera that displays the image on the screen on the control panel. Such levels are used in the same way as “regular” optical ones, but the operating procedure itself is automated and supplemented with a number of advanced functions. Thus, in most models, the operator does not need to manually count the slats, record the results and carry out calculations - the device itself recognizes the recorded marks, stores them in memory and processes the received data, displaying the final result. It is often possible to save information to a memory card or other media, copy it to a PC, or even connect the level to a laptop and use special software (for example, mapping) directly during measurements. On the other hand, such opportunities are not cheap: digital levels are several times, or even orders of magnitude, more expensive than traditional optical ones. So, in general, devices from this category are high-quality devices, designed primarily for professional use - when you often have to deal with large volumes of work, in light of which speed and ease of data processing are of key importance.

— Laser level. A kind of laser projectors that display marks on walls and other surfaces - usually in the form of lines, but there are also models with a dot function (for more details, see “Point projections”) or even only dot ones (see “Purpose”). A classic laser device actually combines the functions of a level and a building level: it can be used both for the above-described geometric leveling using slats, and for constructing planes and marking lines (some models are equipped with mechanisms that allow you to arbitrarily select the angle of inclination). Such devices are well suited for working at short distances, including indoors; and thanks to their relatively simple and inexpensive design, they are very popular, especially in construction. At the same time, we note that some models can have a fairly significant measurement range - up to 50 m on their own and up to 150 m or more using special receivers.
We emphasize that this paragraph includes traditional laser levels, in which the mark line is formed by scattering the beam with a special prism. Rotary models that operate by rotating the emitter are included in a separate section and are described below.

— Rotary level. A variation of the laser levels described above, in which the plane is “drawn” not due to the scattering of the laser beam in the prism, but due to the rapid rotation of the emitter. As a result, the trace from the beam merges into one continuous line for the eye. Rotary levels are usually not cheap and most of them are professional devices designed to work on large areas. The measurement range without a receiver is usually several tens of meters, and with a receiver - up to several hundred. In light of this, when using such devices, you need to be especially careful about observing safety rules - getting a powerful laser beam into your eyes can cause harm to your health, and even the reflection of a laser “bunny” from some surfaces often causes discomfort. So, it is highly advisable to use safety glasses or masks in the operating area of the rotary device.

- Laser rangefinder. Devices for measuring distances using a laser beam. The key advantage of such devices over rulers, tape measures, etc. is that you do not need to move during the measurement process - just place the device at the starting point and point the beam at the object, the distance to which you want to determine. At the same time, the range of action in many models reaches 100 m or more, and the error does not exceed a few millimeters, or even fractions of a millimeter. In addition, modern laser rangefinders can be equipped with various additional functions such as automatic calculation of area and volume, summation of distances, fixation of minimum and maximum, etc. The disadvantages of such devices include reduced efficiency in the presence of fog, heavy dust or other similar contaminants air, as well as difficulties in measuring distances to glass and other transparent objects that transmit the laser beam rather than reflect it. However, these moments are not so often critical, and in terms of performance characteristics, laser devices are noticeably superior to ultrasonic ones. Therefore, this type of rangefinder is the most popular in our time.

— Ultrasonic rangefinder. Range finders using ultrasound; In such devices, a laser is also often installed, but it is intended solely for precise pointing at the desired object and is not used for measurements. In any case, rangefinders of this type are good because their effectiveness practically does not depend on the purity of the air and the type of surface on the object being measured: ultrasound works perfectly through dust, smoke, fog, etc., and is also reflected perfectly from glass and other transparent materials. laser materials. On the other hand, in terms of “range” and accuracy, such devices are noticeably inferior to laser ones: the measurement range in them does not exceed 15 - 20 m, and the error is calculated not in millimeters, but in percentages - usually about 0.5 - 1% (which, for example, at a distance of 10 m corresponds to an actual error of 5 - 10 cm). As a result, rangefinders of this type are much less common than laser ones these days.

Suitable for

General purpose of the device.

This parameter is indicated for models that have a clear specialization - these are mainly laser levels, including rotary ones. Among such devices, there are the following application options: for the 360° area, only for point projections, for the floor and for pipes. Here are the features of each of these varieties:

— For 360° area coverage. A full circle, 360°, by definition covers all rotary levels (see “Type”). However, such specialization can also occur in “regular” laser models. In such devices, full 360° coverage is achieved in other ways - usually by the presence of several emitters, each of which covers its own sector, or a special prism that scatters the beam from one emitter over a full 360°.

- Point projections only. Levels with this feature do not form marks in the form of lines during operation and “draw” only points. At the same time, in the simplest models there is only one point projection, but devices with several marks (up to 5) are more common. In any case, such devices are intended for relatively simple work where there is no need for marking along lines.

- For the floor. Levels designed for working with floors - screeds, laying coverings, etc. A common feature of such devices is a fairly wide base, which allows, in fact, to place the device di...rectly on the floor. But the specific design and operating features of levels of this type may be different. Thus, devices with a characteristic layout are quite popular - with two vertical projections intersecting at an angle of 90° (some models provide two more projections directed in opposite directions from the main ones). Such a device can be used not only on the floor, but also on walls: if you press its base tightly against a particular surface, it will form two clearly perpendicular lines on it. In the case of floors, this can be convenient, for example, when laying tiles.
Another common type of floor level is devices designed to detect unevenness. To do this, use a line formed on the floor using a vertical projection. During operation, a level placed on the floor and aligned horizontally rotates around a vertical axis, and the line “scans” the floor; when it hits a ledge, it becomes uneven. Note that in the simplest models, such a “scanner” uses only one projection, but there is also a more advanced version - a line created by two projections at once. Such a pointer, when it hits an uneven floor, is divided into two separate lines - this is much more noticeable than the deviation when using a single projection.

- For pipes. A rather rare type of specialized laser levels are devices for laying pipelines. They are used, in particular, in the construction of water supply, sewer and stormwater systems. Pipe levels most often have a characteristic cylindrical shape, with a handle at one end and a point laser emitter at the other. They are installed horizontally on special legs (the kit usually comes with several sets of such legs, varying in height); the design usually has a self-leveling mechanism with quite extensive capabilities; and the necessary measurement accuracy is ensured by a target with special markings. Such devices allow you to at least accurately lay horizontal lines, and many of them also allow you to work with corners.

Measurement range

The range at which the device remains fully operational without the use of additional receivers (see below); in other words, the radius of its action without auxiliary devices.

In some models, a range may be specified that shows the minimum ( 3 cm, 5 cm) and maximum measurement ranges. But in most cases, only the maximum value is indicated.

The specific meaning of this parameter is determined by the type of instrument (see above). So, for optical levels, the measurement range is the greatest distance at which the operator can normally see the divisions of a standard leveling staff. For laser levels, this parameter determines the distance from the device to the surface on which the mark is projected, at which this projection will be easily visible to the naked eye; and in rangefinders we are talking about the greatest distance that can be measured. Typically, the measurement range is indicated for ideal conditions - in particular, in the absence of impurities in the air; in practice, it may be less due to dust, fog, or vice versa, bright sunlight "overlapping" the mark. At the same time, tools of the same type can be compared according to this characteristic.

Note that it is worth choosing a device according to the range of action, taking into account the features of the tasks that are planned to be solved with its help: after all, a large measurement range usually significa...ntly affects the dimensions, weight, power consumption and price, but it is far from always required. For example, it hardly makes sense to look for a powerful laser level at 30-40 m if you need a device for finishing work in standard apartments.

Accuracy

Accuracy is described as the maximum deviation from the true value of the measured parameter, which the device can give if all the rules for its operation and the corresponding measurements are observed. In both rangefinders and levels, this parameter is usually designated for a certain distance — for example, 3 mm at 30 m; but even for one manufacturer, these "control" distances may be different. Therefore, in our catalog, the accuracy of all devices is recalculated for 1 m distance; with such a record, for the example above, it will be 3/30 \u003d 0.1 mm / m. This makes it easier to compare different models with each other.

It is also worth mentioning that the meaning of the "accuracy" parameter for different types of measuring instruments (see "Type") will be different. For optical levels, it is described in the "SKP" paragraph above. For laser levels of all types, accuracy is the maximum deviation of the mark from the true horizontal (or vertical, if such a function is provided), and for the horizontal, we can talk about both moving the mark up / down and turning it. In rangefinders, this characteristic describes the maximum difference (both in "plus" and "minus") between the readings of the device and the actual distance to the object.

Anyway, the smaller the error, the better; on the other hand, accuracy significantly affects the price of the device. Therefore, it is necessary to choose a specific model for this parameter, taking into account the...specifics of the planned work. For example, for a relatively simple repair in a residential apartment, a high-precision tool is unlikely to be required; and recommendations for more complex tasks can be found in specialized sources, ranging from expert advice to official instructions.

Accuracy

Measuring accuracy provided by a laser distance meter (see "Type")

This parameter is traditionally indicated by the error - the maximum deviation of the obtained results from the actual values, which may occur due to the imperfection of the device. The physical features of laser rangefinders are such that in such devices the error is practically independent of the measured distance. Therefore, the accuracy of such rangefinders is indicated in millimeters. At the same time, in our time, models are generally considered to be high- precision, where this indicator does not exceed 1.5 mm (in some models it is only 1 mm); but even in relatively simple and inexpensive devices, deviations of more than 3 mm are practically not encountered.

The general selection rules for this indicator are traditional: the more accurate the device, the more expensive it is, as a rule. In addition, we emphasize that for everyday and even many professional tasks, the difference described above is not fundamental in accuracy. Therefore, it makes sense to specifically look for a rangefinder with a minimum error in the case when the measurement accuracy “to the millimeter” is fundamental. At the same time, it should be borne in mind that for such measurements, appropriate accuracy in the placement and use of the device itself will be required - otherwise, all the advantages will be nullified by errors from incorrect installation and operation.

Self-leveling angle

The maximum deviation from the horizontal position that the device is able to correct "by its own means".

Self-leveling in itself greatly simplifies the installation and initial calibration of levels (see "Type"), which often (and for optical models — mandatory) need to be set horizontally to work. With this function, it is enough to install the device more or less evenly (in many models, special devices are provided for this, such as round levels) — and fine tuning in the longitudinal and transverse planes will be carried out automatically. And the limits of self-leveling are usually indicated for both planes; the higher this indicator, the easier the device is to install, the less demanding it is to the initial placement. In some models, this figure can reach 6 – 8 °.

Leveling time

Approximate time it takes for the self-levelling mechanism to bring the level to a perfectly level position.

For more information on such a mechanism, see Self-Level Limits. And the actual time of its alignment directly depends on the actual deviation of the device from the horizontal. Therefore, in the characteristics, usually, the maximum alignment time is given — that is, for the situation when in the initial position the device is tilted to the maximum angle along both axes, longitudinal and transverse. Since the levels are far from being installed in this position, in fact the speed of bringing to the horizontal is often higher than the claimed one. Nevertheless, it makes sense to evaluate different models precisely according to the figures stated in the characteristics — they allow you to estimate the maximum amount of time that will have to be spent on alignment after the next movement of the device. As for specific indicators, they can vary from 1.5 – 2 s to 30 s.

Theoretically, the shorter the alignment time, the better, especially if there are large volumes of work ahead with frequent movements from place to place. However, in fact, when comparing different models, it is worth considering other points. First, we reiterate that the rate of leveling is highly dependent on the leveling limits; after all, the greater the deviation angles, the more time it usually takes for the mechanism to return the level to the horizontal. So, to directly compare w...ith each other in terms of the speed of self-leveling, it is mainly those devices in which the permissible deviation angles are the same or differ slightly. Secondly, when choosing, it is worth considering the specifics of the proposed work. So, if the device is to be used frequently on very uneven surfaces, then, for example, a model with a leveling time of 20 s and self-levelling limits of 6 ° will be a more reasonable choice than a device with a time of 5 s and limits of 2 °, since in In the second case, a lot of time will be spent on the initial (manual) installation of the device. And for more or less even horizontal planes, on the contrary, a faster device may be the best option.

Reference points

The number of reference points provided in the rangefinder (see “Type”).

The reference point is called “conditional zero” - the point from which the device begins to measure distance. If the device states only one reference point, then this is, as a rule, the rear edge of the case. However, there are few such models on the market, mostly the simplest and most inexpensive rangefinders. Devices with two such points are much more popular - usually the rear and front edges of the case. There are also more advanced options - three or even four reference points. In the first case, the role of an additional conventional zero is played by either a folding stop bracket or a mounting point on a tripod; and the second usually provides both a bracket and a tripod socket.

In any case, a larger number of reference points provides more measurement possibilities, but increases the cost of the device.

Operating temperature

The temperature range at which the device is guaranteed to work for a sufficiently long time without failures, breakdowns and exceeding the measurement error specified in the characteristics. Note that we are talking primarily about the temperature of the device case, and it depends not only on the ambient temperature — for example, a tool left in the sun can overheat even in fairly cool weather.

In general, you should pay attention to this parameter when you are looking for a model for working outdoors, in unheated rooms and other places with conditions that are significantly different from indoor ones; in the first case, it makes sense to also make sure that there is dust and water protection (see "Protection class"). On the other hand, even relatively simple and "myopic" levels / rangefinders usually tolerate both heat and cold quite well.
Bosch GLM 40 Professional 0601072900 often compared
Bosch PLL 360 Set 0603663001 often compared