Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison DJI Mini 3 Fly More Combo vs DJI Mini 3 Pro RC

Add to comparison
DJI Mini 3 Fly More Combo
DJI Mini 3 Pro RC
DJI Mini 3 Fly More ComboDJI Mini 3 Pro RC
Compare prices 3
from £1,046.08 
Outdated Product
TOP sellers
Main
Wind resistance up to grade 5. Shooting in vertical orientation True Vertical Shooting. QuickTransfer for fast information transfer over Wi-Fi (up to 25 MB / s). Capturing 180° auto panorama and spherical panorama.
It differs from DJI Mini 3 Pro in shooting modes (4K 30 fps vs. 4K 60 fps), no slow-mo, no obstacle sensors (except from below), support for DJI O2 video transmission (vs. DJI O3) with a range of 6 km and 720p quality (instead of 1080p).
Flight and video transmission range up to 10 km (in FCC mode). Possibility to download the recorded video via Wi-Fi and quick editing in the application. Panorama shooting modes. Shooting in 4K 60 fps. Compact and lightweight.
Supports microSD up to 512 GB UHS-I Speed Class 3 and higher. It differs from the basic version in the presence of a remote control with a built-in DJI RC display.
Flight specs
Range of flight18 km18 km
Maximum flight time38 min34 min
Horizontal speed58 km/h57 km/h
Ascent / descent speed18 km/h18 km/h
Wind impedance11 m/s11 m/s
Camera
Camera typebuilt-inbuilt-in
Matrix size1/3"1/1.3"
Aperturef/1.7f/1.7
Number of megapixels12 MP48 MP
Photo resolution4000x3000 px8064×6048 px
Full HD filming (1080p)1920x1080 px 60 fps1920x1080 px 120 fps
Quad HD filming2720x1530 px 60 fps2720x1530 px 60 fps
Ultra HD (4K)3840x2160 px 30 fps3840x2160 px 60 fps
Viewing angles82.1°82.1°
Mechanical stabilizer suspension
Camera with control
Live video streaming
Memory card slot
Flight modes and sensors
Flight modes
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
 
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
flight plan without GPS (Waypoints)
Sensors
GPS module
heights
optic
gyroscope
GPS module
heights
optic
gyroscope
Obstacle sensors
 
 
bottom
front
Control and transmitter
Controlremote control onlyremote control only
Range6000 m8000 m
Control frequency2.4 and 5.8 GHz2.4 and 5.8 GHz
Video transmission frequency2.4 and 5.8 GHz (Wi-Fi)2.4 and 5.8 GHz (Wi-Fi)
Smartphone mount
Information display
Remote control power sourcebatterybattery
Motor and chassis
Motor typebrushlessbrushless
Number of screws4 pcs4 pcs
Foldable design
Battery
Battery capacity2.45 Ah2.45 Ah
Voltage7.38 V7.38 V
Battery model2S2S
Batteries in the set3 pcs1 pcs
General
Body backlight
Materialplastic
Dimensions148x90x62 mm245х171х62 mm
Dimensions (folded)362x251x72 mm145х90х62 mm
Weight248 g249 g
Color
Added to E-Catalogdecember 2022july 2022

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

Matrix size

The physical size of the photosensitive element of a camera. Measured diagonally, often indicated in fractions of an inch — for example, 1/3.2" or 1/2.3" (respectively, the second matrix will be larger than the first). Note that in such designations it is not the “ordinary” inch (2.54 cm) that is used, but the so-called "Vidiconovsky", which is less than a third and is about 17 mm. This is partly a tribute to the tradition that comes from television tubes — "vidicons" (the forerunners of modern matrices), partly — a marketing ploy that gives buyers the impression that the matrices are larger than they really are.

Anyway, for the same resolution (number of megapixels), a larger matrix means a larger size for each individual pixel; accordingly, on large matrices, more light enters each pixel, which means that such matrices have higher photosensitivity and lower noise levels, especially when shooting in low light conditions. On the other hand, increasing the diagonal of the sensor inevitably leads to an increase in its cost.

Number of megapixels

Resolution of the matrix in the standard camera of the quadrocopter.

Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.

Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.

Photo resolution

The maximum resolution of photos that the standard quadcopter camera can take. This parameter is directly related to the resolution of the matrix (see above): usually, the maximum resolution of a photo corresponds to the full resolution of the matrix. For example, for pictures of 4000x3000 pixels, a sensor of 4000 * 3000=12 megapixels is provided.

Theoretically, a higher resolution of photography allows you to achieve highly detailed photographs, with good visibility of fine details. However, as in the case of the overall resolution of the matrix, high resolution does not guarantee the same overall quality, and you should focus not only on this parameter, but also on the price category of the quadcopter and its camera.

Also note that the high resolution of the camera affects the volume of the materials being shot, for their storage and transmission, more voluminous drives and “thick” communication channels are required.

Full HD filming (1080p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in Full HD (1080p).

The traditional resolution of such a video is 1920x1080; this is what is most often used in drones, although occasionally there are more specific options — for example, 1280x1080. In general, this is far from the most advanced, but more than a decent high-definition video standard, such an image gives sufficient detail for most cases and looks good even on a large TV screen — 32 "and more. At the same time, achieve a high frame rate in Full HD It is relatively simple and takes up less space than higher resolution content, so Full HD shooting can be done even on aircraft that support more advanced video formats like 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion Full HD.

Ultra HD (4K)

Maximum resolution and frame rate supported by the aircraft camera (built-in or bundled) when shooting in Ultra HD (4K)

UHD is a much more advanced video standard than Quad HD and even more so Full HD. Such a frame is approximately 2 times larger than a FullHD frame on each side and, accordingly, 4 times larger in terms of the total number of pixels. In this case, specific resolutions may be different; in copters, 3840x2160 and 4096x2160 are the most popular. Thus, shooting in this standard gives excellent detail; on the other hand, it puts forward rather high demands on the hardware of the camera and the amount of memory. Therefore, 4K support is an unmistakable sign of a high-end built-in camera. At the same time, we note that in modern drones you can also find more solid resolutions — see “Shooting above 4K”.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — average, from 30 to 60 fps — above average, and a speed of 60 fps already allows us to talk about high-speed shooting UltraHD. However for full-fledged high-speed shooting, which allows you to create slow-motion videos, an even higher frame rate...is desirable, which is not yet found in copter cameras; however, modern technologies are developing rapidly, and the situation may change in the near future.

Flight modes

Return home function. With this function, the quadcopter can automatically return to the starting point. The specific details of this feature may vary. So, some models return "home" at the user's command, others are able to do it on their own — for example, when the signal from the remote control is lost or when the battery charge is critically low; in many devices, both options are provided at once. Also note that this function is found even in models that do not have a GPS module (see "Sensors") — the copter can navigate in space in another way (by inertial sensors, by a signal from the remote control, etc.).

Follow me mode. A mode that allows the quadcopter to constantly follow the user at a short distance — like a "personal drone". The way to implement this mode and the equipment required for it can be different: some models track the direction to the transmitter and the signal strength from it, others constantly receive data from the GPS module of a smartphone or other gadget and follow these coordinates, etc. Anyway, such a mode can be useful not only for entertainment, but also for quite practical purposes — for example, for using a quadcopter as an “air chamber”, constantly located next to the operator and at the same time not occupying hands.

Dronie (distance). Initially, the term “dronie” refers to a selfie (photo or video) taken from a...drone. This mode is mainly intended for such tasks. And its essence lies in the fact that the copter smoothly moves away from a certain object along a given trajectory, keeping this object in the centre of the frame. The classic version of flying in Dronie mode is moving away first horizontally, then horizontally and up; however, in some models, the copter’s trajectory can be further configured. Frame management can also be carried out in different ways — from simple pointing at a certain point and ending with the selection of an object on the screen with further "smart" tracking of this object. Anyway, for all its simplicity, such a shooting technique allows you to create quite interesting videos: for example, in this way you can first capture a group of people in close-up in one video, then the beauty of the landscape around them.

Rocket (distance up). A flight mode in which the copter smoothly rises to a predetermined altitude along a strictly vertical trajectory. Similar to the Dronie described above, it is mainly used when shooting video: first, a certain scene is shot in close-up, and as it rises, the camera covers an increasingly wider area around this scene. Usually, in Rocket mode, you can pre-set the height at which the device will stop.

"Orbit mode" (flying in a circle). A mode that allows you to launch the copter in a circular orbit around the specified point. It is also used mainly for shooting video: in such cases, the camera remains constantly pointed at a given object, but the angle and background, due to the movement of the drone, are constantly changing. In the "orbit" settings, usually, you can set its radius, height and direction of movement, as well as the angle of the camera.

Helix (circle in a spiral). Another mode used as an artistic technique for filming videos. In this mode, the copter, keeping a given object in the centre of the frame, moves around it in a spiral, gradually moving away and increasing its height. This allows you to get the maximum variety of angles and angles of coverage.

Note that Dronie, Rocket, Helix, and Orbit modes originally appeared as part of the proprietary QuickShot toolkit in DJI's Mavic series drones. However, later similar functions were introduced by other manufacturers, so now these names are used as common nouns.

Flight plan(Waypoints). The ability to set a specific flight route for the quadcopter, by control points. This feature is very similar to the GPS waypoint flyby (see above), but it works differently, without the use of GPS navigation. One of the most popular options is building a route in the smartphone application through which the copter is controlled; when the programme is launched, the smartphone issues a sequence of commands corresponding to the route to the device. In general, the Waypoints mode is not as accurate as a GPS waypoint flyby and offers fewer options. Therefore, this function is mainly for entertainment purposes; if the copter has a camera, it can be useful for taking a selfie or a simple video.

Flight by GPS points. A mode that allows you to launch a quadcopter along a specific route — by setting individual route points to the car in advance (according to GPS coordinates) and the order in which they are passed. In addition, additional settings may be provided — for example, speed and altitude on individual sections of the route. This function is similar to the Waypoints mode (see below) in many ways, but it is found mainly in mid-range and high-end devices. At the same time, the use of GPS provides higher accuracy, which allows the drone to be used for professional purposes. For example, if you set a route for shooting from the air in this way, the operator will be able to fully concentrate on working with the camera, without being distracted by controlling the copter.

Acrobatic mode. A special mode for performing aerobatics. Note that the specific meaning of this mode may be different, depending on the level and purpose of the copter. So, in the simplest entertainment models, automatic programs are usually provided that allow you to perform certain aerobatic manoeuvres literally “at the touch of a button”. And in advanced devices in flight mode, the stabilization system is turned off, and the drone is very sensitive to operator commands; this requires high precision in control, but gives maximum control over the flight.

Obstacle sensors

The location of the obstacle sensors that the quadcopter is equipped with.

Such sensors allow the drone to recognize foreign objects in the immediate vicinity in advance and avoid collisions with them; however, many models even provide the possibility of automatic avoidance of obstacles. Such equipment will definitely be useful when flying in a confined space, but it can also come in handy in open areas — they reduce the risk of bumping into wires, flying into tree branches, etc.

In terms of location, the most advanced option is full coverage, in which sensors are installed on all sides: front, rear, sides, top and bottom. However, more modest options are not uncommon. At the same time, we note that the front sensor can be provided even in models equipped with a camera and having the ability to live broadcast (see above): such a sensor usually covers the dead zone of the camera, providing, again, additional insurance against collisions.
DJI Mini 3 Fly More Combo often compared
DJI Mini 3 Pro RC often compared