Range
The maximum distance that an electric scooter can travel on a single battery charge.
Usually the range is indicated for a flat road and driving only on an electric motor, without the help of a rider. So this indicator is quite conditional, in practice, the distance of the trip may be either less or more, depending on the characteristics of the road and driving style. Nevertheless, according to the claimed range, it is quite possible to estimate the autonomy of different models and compare them with each other.
Note that a
large range (more than 50 km) requires capacious batteries, which affects the dimensions and weight of the device. The real need for such autonomy is not required so often, especially since many electric scooters are quite capable of driving in the usual way, without the use of an electric motor.
Max. power
The power in watts that the electric scooter motor can develop at maximum speed. In general, for scooters with an electric drive, it is customary to indicate the rated engine power (see above), which ensures efficient operation of the motor for a long time. By maximum, we mean power in the “gas pedal to the floor” mode, achieved only in the short term. Using this parameter, you can roughly estimate the capabilities of a particular model, for example, in terms of speed dynamics - the more power, the faster the scooter accelerates.
Max. speed
A high top speed gives you more riding options and reduces travel time. However, it requires powerful motors and capacious batteries, which affects the price and weight of the scooter. In addition, the faster the scooter, the more careful you need to be when driving. Therefore, most of the electric scooters have a speed of
25 km / h or a little more -
30 km / h.
Speed modes
The number of speed modes in the electric scooter. By switching between them, the rider has the right to choose the most comfortable pace of the trip and change the upper speed limit bar.
Max. climbing angle
The maximum climbing angle that an electric scooter can overcome on engine power alone, without the help of legs. Models with engines of the same power may differ in this indicator (due to the difference in torque and wheel size).
Note that in the specifications the angle is usually indicated in degrees, while on road signs it is given as a percentage (1% corresponds to a rise of 1 m for every 100 m of horizontal movement). However, this moment is not particularly critical: if you often have to overcome a certain hill, you can clarify its slope by converting percentages into degrees (and vice versa) according to special tables. In addition, if the angle turns out to be too large, nothing prevents you from helping the scooter with your foot, in extreme cases, to overcome the climb on foot.
Drive
The type of drive in the design of the scooter determines to which wheels the traction from the electric motor is transmitted.
-
Front. The drive to the front wheel pulls the entire electric scooter. It provides improved stability on the road, minimizes the likelihood of skidding in corners, and guarantees a soft start and smooth acceleration. On the other hand, the electric motor at the front increases the weight of the wheel assembly and increases the effort when turning the handlebar.
-
Rear. Rear-wheel drive electric scooters are not as stable on the road as front-wheel drive models. However, they are more frisky, demonstrate dynamic acceleration and easily conquer hills.
-
All-wheel. Scooters with all-wheel drive combine all the positive qualities of front- and rear-wheel drive models in one package. They are also best suited for off-road driving — the all-wheel drive chassis does not care about pits and steep hills, other road irregularities, or mud deposits on the road.
Front brake
Among the various types of brakes in scooters, you can find
rim,
disc,
drum,
electric. There are also models without a front brake.
- Rim. The rim brake is considered the simplest type of braking system. Such brakes provide a smooth deceleration and a complete stop of the scooter at an average speed. The stopping distance is usually medium or long. The rim brake is represented by pads, which, using a special mechanism, are pressed against the wheel rim. The pads themselves are driven by a lever, which is placed on the handlebar. Among the advantages of a rim brake are low price, and simple design. And drawbacks are fairly quick wear of the pads and the need to adjust the brakes as the friction linings wear out. Additionally, when using a scooter with a rim brake, be aware that the pads become less grippy if the rim is wet. In rainy, cloudy and slushy weather, the rim brake cannot be relied upon.
— Disk. Disc brakes are considered more advanced than rim brakes. The disc brake allows the scooter to stop quickly enough, and the braking distance itself can be either minimal or medium. Such brakes are represented by a friction clutch that acts on a small-diameter disc. The disc is attached to the wheel axle. The clutch is pressed against the brake disc with a sufficiently large force, which allows the disc brakes to b
...e effective even when wet on the clutch. The disc brake is controlled by a lever that is placed on the handlebar. The advantages of a disc brake for a scooter are reliability, durability and the ability to stop quickly. Among the shortcomings, we highlight the high price and the need to adjust as the friction clutch wears out.
- Drum. Drum brakes slow down well and provide a fairly quick stop. In terms of efficiency, the drum brake for a scooter is between the rim and disc brake systems. The drum brake uses pads that are located inside the rim. In this case, the friction plates act on the inside of the rim. The brake with a drum device has many advantages: a large friction contact surface, moisture protection, reliability and durability. Among the shortcomings can be noted: the use of massive wheels, the complexity of service maintenance, and the need for periodic adjustment.
- Electric — braking with the help of recuperation. In this case, the deceleration and stop are produced by the electric motor itself, by reducing the speed. Usually, the electric brake provides a soft and smooth stop. As a rule, the electric brake acts as an auxiliary brake system. Also, advanced scooters often use a recuperative electric brake. In this case, when the speed is slowed down, energy is recovered, which allows you to recharge the battery pack.
- No brake. The front wheel is not equipped with a brake system. The braking can only be provided at the rear.Suspension
The electric scooter has a shock absorption system – it makes the ride more comfortable, smoothing out vibrations and shocks when moving on uneven road surfaces, but reduces the rolling ability and control accuracy.
–
Only front. In models with such shock absorption, the corresponding device for damping irregularities is installed only on the front wheel, while the rear wheel is fixed rigidly. Electric scooters with a front shock absorber combine good handling and provide comfortable movement on bad roads or over rough terrain.
–
Only back. Electric scooters in which only the rear wheels are shock-absorbed, while the front wheels are rigidly fixed. The rear shock absorber is designed to provide additional comfort when encountering various uneven road surfaces, but it is often inferior in efficiency to the front one.
—
Front and rear. An advanced type of shock absorption system on both wheels of an electric scooter. Dual-shock models are best at dampening vibrations felt by the rider and providing adequate traction on rough trails. At the same time, double depreciation reduces the rolling of the scooter to the greatest extent.
—
No Suspension. In electric scooters without shock absorption, the wheels are rigidly attached to the frame. This design is simple, and the corresponding models have a
...good roll. However, the rider feels the entire terrain of the road in full.Regenerative
Possibility of electric scooter operation in recuperation mode. In this mode, the direction of the current starts “in the opposite direction”: the electric motors in the wheels work like generators, generating electricity and recharging the battery. In this case, the speed must be maintained either due to repulsion from the ground, or due to coasting from a hill. Properly using recuperation, you can significantly increase the power reserve: for example, it is good to turn on this mode on long descents or on long, flat sections of the road where it is easy to drive in the usual way, without using electric motors.