Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   AVR

Comparison Triton TSN-12000 12 kVA vs Forte TVR-10000VA 10 kVA

Add to comparison
Triton TSN-12000 12 kVA
Forte TVR-10000VA 10 kVA
Triton TSN-12000 12 kVAForte TVR-10000VA 10 kVA
from $152.64
Outdated Product
from $135.44
Outdated Product
TOP sellers
AVR typerelayrelay
Input voltage230V (1 phase)230V (1 phase)
Power12 kVA10 kVA
Specs
Input voltage range110 – 275 V140-260 V
Output voltage accuracy (±)6 %8 %
Response time7 ms
Efficiency95 %97 %
Voltmeterdigitalanalogue
Sockets
Terminal connection
Protection levels
Protection
overheating
short circuit
overload
over / under voltage
overheating
short circuit
overload
over / under voltage
General
Installation
wall
floor
 
floor
Coolingpassivepassive
IP protection rating2020
Carrying handle
Dimensions380x520x250 mm256x220x410 mm
Weight18.2 kg19.55 kg
Added to E-Catalogjanuary 2017march 2014

Power

Maximum apparent load power allowed for this model

In electrical engineering, full power is called, which takes into account both active and reactive power; the first type of power is discussed above, and the second can be described as the effect of windings, inductors and capacitors on the operation of AC networks. Apparent power is the main parameter for calculating loads on equipment in professional electrical engineering; it is usually denoted in volt-amperes (VA), in the case of stabilizers — in kilovolt-amperes (kVA). Note that for convenience, different types of power in electrical engineering are denoted by units with different names. That is why the power in W indicated in the characteristics of the stabilizer is usually not equal to its power in VA.

When choosing a stabilizer for some household appliances, it is quite enough to have active power data, but if possible it is better to use the full one. In particular, it is this parameter that is key when looking for a stabilizer for a refrigerator or a stabilizer for a boiler : in the first case, 0.4 – 1 kVA is considered the optimal value, in the second — from 0.1 to 0.7 kVA. However, anyway, it is necessary to choose a specific model in such a way that its total power is not lower than the total power of the entire connected load — and it is better to have a reserve (in case of unforeseen circumstances or connecting additional eq...uipment). At the same time, note that powerful models are distinguished by large dimensions and weight, and most importantly, high cost; therefore, it does not always make sense to chase the maximum numbers.

Also note that there are formulas that allow you to derive the optimal total power of the stabilizer based on data on active power and type of load; they can be found in special sources.

Input voltage range

The voltage range at the input of the stabilizer, at which it is able to operate in normal mode and supply a constant voltage of 230 or 400 V to the load (depending on the number of phases, see above). The wider this range — the more versatile the device, the more serious power surges it can extinguish without going beyond the standard operating parameters. However, note that this parameter is not the only, and not even far from the main indicator of the quality of work: a lot also depends on the accuracy of the output voltage and the response speed (see both points below).

Also note that some models may have several modes of operation (for example, with 230 V, 230 V or 240 V output). In this case, the characteristics indicate the "general" input voltage range, from the smallest minimum to the largest maximum; the actual ranges for each particular mode will vary.

In addition, there are stabilizers that can operate outside the nominal input voltage range: with a slight deviation beyond its limits, the device provides relatively safe output indicators (also with some deviations from the nominal 230 or 400 V), but if the drop or rise becomes critical, it works appropriate protection (see below).

Output voltage accuracy (±)

The largest deviation from the nominal output voltage (230 V or 400 V, depending on the number of phases), which the regulator allows when operating in the normal input voltage range (see above). The smaller this deviation, the more efficiently the device works, the more accurately it adapts to “changes in the situation” and the less voltage fluctuations the connected load is exposed to.

When choosing for this parameter, it is worth considering first of all how demanding the connected devices are for voltage stability. On the one hand, high stability is good for any device, on the other hand, it usually means a high price. Accordingly, it usually does not make sense to buy an advanced stabilizer for an unpretentious load like light bulbs and heaters, but for sensitive devices like audio systems or computers, it can be very useful.

Response time

The rate at which the regulator responds to changes in input voltage. It is determined by the time that passes from the moment of a power surge until the moment when the device fully adjusts to the new parameters and the output current corresponds to the standard 230 or 400 V (depending on the number of phases, see above). Accordingly, the shorter the response time, the better the stabilizer works, the lower the likelihood that a power surge will significantly affect the connected equipment. On the other hand, not all types of electrical appliances are sensitive to speed — for some, smooth adjustment or voltage accuracy is more important (see above); and the high speed itself can significantly affect the price of the device. Therefore, when choosing by this parameter, it makes sense to consider which devices are planned to be connected through the stabilizer.

Efficiency

The efficiency of the stabilizer is the ratio, expressed as a percentage, between the amount of electricity at the output of the device to the amount of energy at the input. In other words, efficiency describes how much of the energy received from the network the device transfers to the connected load without loss. And losses during operation will be inevitable — firstly, not a single transformer is perfect, and secondly, the control circuits of the stabilizer also require a certain amount of energy to work. At the same time, all these costs are quite small, and even in relatively simple modern models, the efficiency can reach 97-98%.

Voltmeter

The type of voltmeter provided in the stabilizer design, or rather the type of scale used by this device. This voltmeter itself allows you to monitor the voltage - usually both at the input and at the output - which makes it easier to control the stabilizer's operation. For this purpose, two separate scales are most often provided, but there are also "single" voltmeters, with a switch to select between input and output voltage. And by scale type, there are the following options:

— Analog. Analog voltmeters are equipped with a traditional scale — with divisions and an arrow applied to it. They are simpler and cheaper than digital ones, but less accurate — even in the thinnest devices, the error in indications can be 5-10 V only due to the peculiarities of reading information from such a scale. And in some inexpensive models, analog voltmeters play the role of general indicators rather than precision devices. At the same time, for most everyday tasks, such accuracy is quite sufficient.

— Digital. In such voltmeters, the role of the scale is played by a digital indicator, on which voltage values can be displayed with an accuracy of up to a volt — this is the main advantage of this option over the analog one. Among the disadvantages, it is worth noting the complexity and rather high cost of digital indicators. In addition, such high accuracy can be critical in the professional sphere, but in everyday life it is not always...required. Accordingly, in inexpensive low-power stabilizers, a digital voltmeter is often more of a marketing ploy than a real necessity.

Terminal connection

The presence in the design of the stabilizer of at least two pairs of terminals — at the input and at the output. Unlike sockets, which are designed for frequent connections and disconnections, the terminal connection is designed to permanently secure the wires — roughly speaking, "attached — clamped — forgot." It does not involve direct connection of electrical appliances, usually the power from the terminals goes further into the mains and is already distributed through it to individual sockets in the room. Accordingly, this option is typical for powerful models (on average from 3 kVA and above, see "Power"), which are designed for installation in one place as a permanent element of the power grid. Often such stabilizers do not have their own outlets at all — only terminals.

Installation

Wall mounted. This option includes two installation methods. The first, classic option is hanging with the help of “ears” on screws, studs or other similar devices. Thanks to this, the device does not take up space on the floor, in addition, the owner can choose the installation height; this is especially useful in cramped conditions. The disadvantage of this method, compared with the floor, can be called the need to "hollow the walls" and less suitability for moving from place to place; in addition, it is poorly suited for powerful heavy vehicles. The second type of wall-mounted devices are compact low-power models (usually a voltage relay — see "Device"), plugged into a socket not through a wire, but with a plug on the case itself. In fact, such a device is mounted directly on the outlet and does not require special installation.

— Outdoor. Floor models favorably differ from wall models in simplicity and ease of installation: in fact, apart from a flat surface, nothing else is needed for them. The role of such a surface can be played not only by the floor, but also by a shelf, countertop, etc. (the main thing is that such a design can withstand the weight of the stabilizer), and the installation itself is limited only to moving the stabilizer to the desired point in the room. In addition, the ease of moving from place to place is limited only by the mentioned weight, and it can be almost anything. Thanks to this, among the floor...models there are options for any available power and "tricks". The main disadvantage of this method is the need for space under the stabilizer on the floor or other surface.

Note that some models allow both wall and floor installation as standard. Such a device can be useful, for example, if you have not yet decided on a specific option, or if the situation can change at any time. In addition, it is technically possible to put the wall model on the floor, and equip the floor model with mounts and hang it on the wall, but usually such tricks at least do not make sense, or even lead to unpleasant consequences (such as overheating or breakage of the mounts).

Carrying handle

The presence in the design of the stabilizer of a special handle for carrying the device from place to place. This feature is useful primarily for powerful and, accordingly, heavy devices, which would be inconvenient to hold directly by the case. And in the most "weighty" models, which are not designed to be carried alone, there are several handles.
Triton TSN-12000 often compared
Forte TVR-10000VA often compared