Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   AVR

Comparison RUCELF Stabik StAR-2000 2 kVA / 1400 W vs RUCELF SRW-2000-M 2 kVA / 1400 W

Add to comparison
RUCELF Stabik StAR-2000 2 kVA / 1400 W
RUCELF SRW-2000-M 2 kVA / 1400 W
RUCELF Stabik StAR-2000 2 kVA / 1400 WRUCELF SRW-2000-M 2 kVA / 1400 W
from $45.24 up to $48.14
Outdated Product
Expecting restock
TOP sellers
AVR typerelayrelay
Input voltage230V (1 phase)230V (1 phase)
Power1400 W1400 W
Power2 kVA2 kVA
Specs
Input voltage range140-270 V140-270 V
Output voltage accuracy (±)6 %6 %
Response time20 ms
Efficiency98 %
Voltmeterdigitaldigital
Sockets
Grounded sockets21
Protection levels
Protection
overheating
short circuit
overload
over / under voltage
overheating
short circuit
 
over / under voltage
General
Installation
 
floor
wall
floor
Coolingpassivepassive
IP protection rating2020
Carrying handle
Dimensions140x190x240 mm310x225x130 mm
Weight5.1 kg5.1 kg
Added to E-Catalogjanuary 2016april 2014

Response time

The rate at which the regulator responds to changes in input voltage. It is determined by the time that passes from the moment of a power surge until the moment when the device fully adjusts to the new parameters and the output current corresponds to the standard 230 or 400 V (depending on the number of phases, see above). Accordingly, the shorter the response time, the better the stabilizer works, the lower the likelihood that a power surge will significantly affect the connected equipment. On the other hand, not all types of electrical appliances are sensitive to speed — for some, smooth adjustment or voltage accuracy is more important (see above); and the high speed itself can significantly affect the price of the device. Therefore, when choosing by this parameter, it makes sense to consider which devices are planned to be connected through the stabilizer.

Efficiency

The efficiency of the stabilizer is the ratio, expressed as a percentage, between the amount of electricity at the output of the device to the amount of energy at the input. In other words, efficiency describes how much of the energy received from the network the device transfers to the connected load without loss. And losses during operation will be inevitable — firstly, not a single transformer is perfect, and secondly, the control circuits of the stabilizer also require a certain amount of energy to work. At the same time, all these costs are quite small, and even in relatively simple modern models, the efficiency can reach 97-98%.

Grounded sockets

The number of sockets for 230 V with grounding provided in the design of the stabilizer.

Some electrical appliances, such as refrigerators and washing/dishwashers, must be grounded when connected. This point should not be ignored — there is a risk of a serious electric shock. Accordingly, the number of sockets with grounding corresponds to the maximum number of such devices that can be simultaneously connected to the stabilizer without the use of splitters. At the same time, ungrounded devices can also be connected to such sockets.

Protection

- From overheating. Protection that prevents the critical temperature rise of individual components of the stabilizer - for example, in case of overload, short circuit or failure in the cooling system. When a certain temperature value is exceeded, it turns off the device in order to avoid breakdowns and fires. Such systems are especially important for semiconductor types of stabilizers - thyristor and triac(see above). And in some models, this function can be supplemented by a temperature increase signal - it works at a temperature close to critical.

- From high-frequency interference. This protection dampens incoming high-frequency interference, preventing them from affecting the operation of devices connected to the stabilizer. Such interference can occur, for example, from electric motors, welding machines, etc. So, in audio systems, high-frequency distortion causes an unpleasant background from the speakers. RFI protection filters out these distortions, providing a smooth sine wave output.

- Against short circuit. A system that protects the stabilizer in the event of short circuits in the connected load. A short circuit is a situation when the resistance in the circuit becomes close to zero; this leads to a sharp increase in current strength, overloads the power grid and the stabilizer itself, and also creates a ri...sk of breakdown or even fire. In order to avoid unpleasant consequences, appropriate protection is provided: it disconnects the load in case of a significant excess of the current in it. This feature is almost mandatory in modern stabilizers.

- From overload. Safety system in case of stabilizer overload - that is, a situation when the total power of the connected load becomes greater than the corresponding indicators of the device itself (see "Power"). The reason for this situation may be, for example, the inclusion of an additional consumer or a change in the operating mode of one of the existing ones. Unlike the short circuit described above, when overloaded, all electrical appliances work normally, the stabilizer itself is abnormal, which can lead to its failure or even fire. To avoid this, overload protection is applied. Its specific implementation may be different. In some models, the load is turned off immediately, in others - after a certain time after the warning signal, which gives the user the opportunity to reduce power consumption and avoid system tripping.

- From over / under voltage. A system that protects the device from too low or too high input voltage. A significant overshoot of the input voltage range (see above) is dangerous not only by the risk of damage to the stabilizer itself: under such conditions, the device’s capabilities are not enough to fully protect the connected load, which can result in trouble for it. And this function prevents such consequences: if the input voltage goes beyond the permissible values (they may be wider than the operating values, see “Input voltage range”), the stabilizer is disconnected from the network. At the same time, some of its functions may remain operational - for example, a voltmeter that allows you to assess the "state of affairs" in the network at the input. And in some models there is a function to automatically turn on when the voltage returns to operating limits.

Installation

Wall mounted. This option includes two installation methods. The first, classic option is hanging with the help of “ears” on screws, studs or other similar devices. Thanks to this, the device does not take up space on the floor, in addition, the owner can choose the installation height; this is especially useful in cramped conditions. The disadvantage of this method, compared with the floor, can be called the need to "hollow the walls" and less suitability for moving from place to place; in addition, it is poorly suited for powerful heavy vehicles. The second type of wall-mounted devices are compact low-power models (usually a voltage relay — see "Device"), plugged into a socket not through a wire, but with a plug on the case itself. In fact, such a device is mounted directly on the outlet and does not require special installation.

— Outdoor. Floor models favorably differ from wall models in simplicity and ease of installation: in fact, apart from a flat surface, nothing else is needed for them. The role of such a surface can be played not only by the floor, but also by a shelf, countertop, etc. (the main thing is that such a design can withstand the weight of the stabilizer), and the installation itself is limited only to moving the stabilizer to the desired point in the room. In addition, the ease of moving from place to place is limited only by the mentioned weight, and it can be almost anything. Thanks to this, among the floor...models there are options for any available power and "tricks". The main disadvantage of this method is the need for space under the stabilizer on the floor or other surface.

Note that some models allow both wall and floor installation as standard. Such a device can be useful, for example, if you have not yet decided on a specific option, or if the situation can change at any time. In addition, it is technically possible to put the wall model on the floor, and equip the floor model with mounts and hang it on the wall, but usually such tricks at least do not make sense, or even lead to unpleasant consequences (such as overheating or breakage of the mounts).

Carrying handle

The presence in the design of the stabilizer of a special handle for carrying the device from place to place. This feature is useful primarily for powerful and, accordingly, heavy devices, which would be inconvenient to hold directly by the case. And in the most "weighty" models, which are not designed to be carried alone, there are several handles.
RUCELF Stabik StAR-2000 often compared