United Kingdom
Catalog   /   Computing   /   Monitors

Comparison AOC I220SWH 22 " gray vs AOC I2281FWH 22 " black

Add to comparison
AOC I220SWH 22 "  gray
AOC I2281FWH 22 "  black
AOC I220SWH 22 " grayAOC I2281FWH 22 " black
Outdated Product
from $120.00 up to $175.64
Outdated Product
TOP sellers
Product typemonitormonitor
Size22 "22 "
Screen
Panel typeIPSAH-IPS
Surface treatmentmattematte
Resolution1920x1080 (16:9)1920x1080 (16:9)
Pixel size0.25 mm0.25 mm
Response time (GtG)5 ms4 ms
Refresh rate60 Hz60 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness250 cd/m²250 cd/m²
Static contrast1 000:11 000:1
Dynamic Contrast20 000 000:150 000 000:1
Colour depth16.7 million colours (8 bits)16.7 million colours (8 bits)
Connection
Video transmission
VGA
1xHDMI
VGA
1xHDMI
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
Flicker-Free
Flicker-Free
General
Wall mountVESA 100x100mm
Power consumption17 W
22 W /0.5W standby/
Dimensions (WxHxD)532x382x118 mm
500x382x150 mm /with stand/
Weight3.1 kg2.65 kg
Color
Added to E-Catalognovember 2017june 2016

Panel type

The technology by which the monitor matrix is made.

TN+film. The oldest and most common technology for manufacturing matrices. The original TN (Twisted Nematic) monitors have a low response time and low cost, but the image quality is average. So, the colour quality is not high, and the perfect black colour cannot be reproduced at all. In addition, the original TN technology provides relatively small viewing angles. To correct this situation, a special film is applied to the surface of the matrix. These matrices received the name "TN + film". Monitors with such a matrix are widespread and inexpensive. They are well suited for undemanding users both at home and in the office, and gamers will appreciate the fast response time.

*VA(Vertical Alignment, options: MVA, PVA, Super MVA, Super PVA). A kind of transitional option between expensive and high-quality IPS and low-cost TN. Provide sufficiently high-quality colour reproduction, including black colour, viewing angles can reach 178°. The main disadvantage of VA matrices is the significant response time (especially for MVA monitors), due to which such monitors are relatively poorly suited for watching videos and dynamic games. This shortcoming is gradually being eliminated, and the latest models of VA monitors are approaching TN + film in respo...nse time.

— IPS. Initially, IPS technology was created for high-end monitors (in particular, "designer"), the key parameters for which were the quality of colour reproduction and a wide colour gamut. With all these advantages, the original IPS matrices also had a number of serious drawbacks — first of all, low response speed and impressive cost. Thus, many modifications of the IPS technology have been developed, designed to compensate for these shortcomings to one degree or another.

OLED. Monitors with screens using organic light emitting diodes — OLED. Such LEDs can be used both to illuminate a traditional matrix, and as elements from which a screen is built. In the first case, the advantages of OLED over traditional LED backlighting are compactness, extremely low power consumption, backlight uniformity, as well as excellent brightness and contrast ratios. And in matrices, consisting entirely of OLED, these advantages are even more pronounced. The main disadvantages of OLED monitors are the high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn-in when broadcasting static images for a long time or pictures with static elements (toolbar, clock, etc.).

QLED. Monitors built using quantum dot technology (QLED). This technology can be used in matrices of various types. It involves replacing a set of several colour filters used in classic matrices with a special thin-film coating based on nanoparticles, and traditional white LEDs with blue ones. This allows you to achieve higher brightness, colour saturation and colour quality at the same time as reducing the thickness and reducing power consumption. In addition, QLED is well suited for creating curved screens. The flip side of these benefits is the high price.

QD-OLED. A kind of hybrid version of matrices that combine “quantum dots” (Quantum Dot) and organic light-emitting diodes (OLED) in one bottle. The technology takes the best from QLED and OLED: it is based on blue LEDs, self-luminous pixels (instead of external backlighting) and “quantum dots”, which play the role of color filters, but at the same time practically do not attenuate the light (unlike traditional filters) . Thanks to the use of a number of advanced solutions, the creators managed to achieve very impressive characteristics, significantly superior to many other OLED matrices. Among them are high peak brightness from 1000 nits (cd/m²), excellent contrast and black depth, as well as an expanded color gamut (over 120% of the DCI P3 gamut). Such matrices are found mainly in expensive advanced monitors with a large screen diagonal.

— AHVA. A type of matrix created by AU Optronics (a joint venture between Acer and BenQ) as a solution similar to modern IPS. Among the key advantages of this option over analogues is the almost complete absence of colour distortions at all viewing angles.

– PLS (Plane to Line Switching). This type of matrix was developed by Samsung engineers. It is based on the familiar IPS technology. According to some parameters, namely: the brightness and contrast of PLS exceeds IPS by 10%. The main goal of creating a new type of screens was to reduce the cost of the matrix, according to the developer, the production cost was reduced by 15%, which will positively affect the final price of monitors in comparison with IPS counterparts.

— IGZO. Technology introduced by Sharp in 2012. The key difference between IGZO and classic LCD matrices is that for the active layer (responsible for creating the image) it uses not amorphous silicon, but a semiconductor material based on indium gallium oxide and zinc oxide. This makes it possible to create screens with extremely fast response times and high pixel densities, and the technology is considered well suited for ultra-high resolution screens. With all this, the colour rendering characteristics allow the use of IGZO monitors even in the professional field, and the power consumption is very low. The main disadvantage of this option is the high cost.

— UV2A. An LCD display technology developed by Sharp and introduced in 2009. One of the key features of UV2A matrices is that they are based on liquid crystals that are sensitive to ultraviolet light. And it is UV radiation that is used as a control signal — it ensures that the crystals turn in the right direction to form an image. The technical features of such systems are such that the position of individual crystals can be controlled with extremely high accuracy — up to several picometers (with the size of the crystals themselves about 2 nm). According to the manufacturer, this provides two key benefits: no backlight "leakage" and improved light transmission with "open" crystals. The first allows you to achieve very deep and rich blacks, the second provides excellent brightness with low power consumption, and together these two features make it possible to create screens with a very high static contrast ratio — up to 5000: 1. At the same time, we note that the actual contrast characteristics in UV2A monitors can be noticeably more modest — it all depends on the features of a particular matrix and the characteristics that the manufacturer was able or considered necessary to provide.

— Mini LED IPS. A variation on the theme of the familiar IPS-matrix, which is illuminated by an array of reduced LEDs. The small caliber of individual light sources (of the order of 100-200 microns) makes it possible to form a much larger number of zones of controlled local dimming of the screen. Together, this delivers improved brightness, contrast, colour saturation, and black depth, and raises the bar for High Dynamic Range (HDR) technology.

— Mini LED VA. A variety of VA-matrices with a Mini LED backlight system. It consists of many tiny LEDs, which, due to their number, form many times more local screen dimming zones than standard canvases. As a result, Mini LED VA panels boast improved colour reproduction, impressive black depth, and multiple performance improvements in HDR content.

— Mini LED QLED. Behind the plane of the QLED panel in monitors with a Mini LED backlight system are thousands of miniature LEDs no larger than 200 microns in size, which divide the screen into a great many zones with controlled local dimming. They are individually dimmable, allowing full display of HDR content with bright light and deepest black levels.

Response time (GtG)

The time each individual pixel on the monitor takes to switch from one state to another. The lower the response time, the faster the matrix responds to the control signal, resulting in less delay and better image quality in dynamic scenes.

Note that in this case, the gray-to-gray method is used (the time it takes to switch from 10% gray to 90% gray). Pay attention to this parameter if the monitor is specifically purchased for fast-paced games, movie watching, or other applications involving quick screen movements. However, there’s no need to chase the fastest models. It’s not often possible to discern the difference between 1 ms and 5 ms. For most scenarios, monitors with a 4 ms response time will suffice. In any case, it’s best to rely on live impressions for a true comparison.

Dynamic Contrast

Dynamic contrast provided by the monitor screen.

Dynamic contrast refers to the difference between the brightest white at maximum backlight intensity and the deepest black at minimum backlight. In this way, this indicator differs from static contrast, which is indicated with a constant backlight level (see above). Dynamic contrast ratio can be expressed in very impressive numbers (in some models — more than 100,000,000: 1). However, in fact, these figures are poorly correlated with what the viewer sees: it is almost impossible to achieve such a difference within one frame. Therefore, dynamic contrast is most often more of an advertising than a practically significant indicator, it is often indicated precisely in order to impress an inexperienced buyer. At the same time, we note that there are "smart" backlight technologies that allow you to change its brightness in certain areas of the screen and achieve a higher contrast in one frame than the claimed static one; these technologies are found mostly in premium monitors.

Wall mount

The size of the VESA mount included with the monitor.

VESA is the standard wall mount format for modern TVs and monitors. The mounting base is a rectangular plate with four screw holes in the corners. The distance between these holes vertically and horizontally in millimetres is the main characteristic of the fastening — for example, one of the most common is the size of 100x100. For small screens, 75x75 mounts are provided, for large and heavy monitors — 200x200 and more (up to 800x400).

Power consumption

Rated power consumption of the monitor. Usually, this item indicates the maximum power that the device can consume during normal operation — that is, the energy consumption at maximum brightness, the highest volume of the built-in acoustics, etc. Actual power consumption can be noticeably lower, however, when choosing, it is still best to focus on the value stated in the specifications.

In general, the lower the power consumption, the more economical the device in terms of electricity consumption (ceteris paribus). In addition, this characteristic can be useful when selecting an uninterruptible power supply for a PC and in other specific situations when it is necessary to accurately determine the power consumption of equipment.
AOC I220SWH often compared
AOC I2281FWH often compared