Dark mode
United Kingdom
Catalog   /   Computing   /   Monitors

Comparison Dell U2417H 24 " vs Dell U2412M 24 "

Add to comparison
Dell U2417H 24 "
Dell U2412M 24 "
Dell U2417H 24 "Dell U2412M 24 "
from £99.99 
Outdated Product
from £593.44 
Outdated Product
User reviews
0
11
0
TOP sellers
Product typemonitormonitor
Size24 "24 "
Screen
Panel typeAH-IPSE-IPS
Surface treatmentmattematte
Resolution1920x1080 (16:9)1920x1200 (16:10)
Pixel size0.27 mm0.27 mm
Response time (GtG)6 ms8 ms
Refresh rate60 Hz60 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness250 cd/m²300 cd/m²
Static contrast1 000:11 000:1
Dynamic Contrast2 000 000:1
Colour depth16.7 million colours (8 bits)16.7 million colours (8 bits)
Colour space (sRGB)99 %
Connection
Video transmission
 
 
DisplayPort
mini DisplayPort
1xHDMI
VGA
DVI-D
DisplayPort
 
no HDMI
Features
Portrait pivot
Screen swivel
Height adjustment
USB hub 2.0
USB hub 3.x
Fast charge
General
Wall mountVESA 100x100mmVESA 100x100mm
Power consumption60 W38 W
Dimensions (WxHxD)537.6x485.3x188 mm556х514х180 mm
Weight3.18 kg4 kg
Added to E-Catalogjune 2016july 2011

Panel type

The technology by which the monitor matrix is made.

TN+film. The oldest and most common technology for manufacturing matrices. The original TN (Twisted Nematic) monitors have a low response time and low cost, but the image quality is average. So, the colour quality is not high, and the perfect black colour cannot be reproduced at all. In addition, the original TN technology provides relatively small viewing angles. To correct this situation, a special film is applied to the surface of the matrix. These matrices received the name "TN + film". Monitors with such a matrix are widespread and inexpensive. They are well suited for undemanding users both at home and in the office, and gamers will appreciate the fast response time.

*VA(Vertical Alignment, options: MVA, PVA, Super MVA, Super PVA). A kind of transitional option between expensive and high-quality IPS and low-cost TN. Provide sufficiently high-quality colour reproduction, including black colour, viewing angles can reach 178°. The main disadvantage of VA matrices is the significant response time (especially for MVA monitors), due to which such monitors are relatively poorly suited for watching videos and dynamic games. This shortcoming is gradually being eliminated, and the latest models of VA monitors are approaching TN + film in respo...nse time.

— IPS. Initially, IPS technology was created for high-end monitors (in particular, "designer"), the key parameters for which were the quality of colour reproduction and a wide colour gamut. With all these advantages, the original IPS matrices also had a number of serious drawbacks — first of all, low response speed and impressive cost. Thus, many modifications of the IPS technology have been developed, designed to compensate for these shortcomings to one degree or another.

OLED. Monitors with screens using organic light emitting diodes — OLED. Such LEDs can be used both to illuminate a traditional matrix, and as elements from which a screen is built. In the first case, the advantages of OLED over traditional LED backlighting are compactness, extremely low power consumption, backlight uniformity, as well as excellent brightness and contrast ratios. And in matrices, consisting entirely of OLED, these advantages are even more pronounced. The main disadvantages of OLED monitors are the high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn-in when broadcasting static images for a long time or pictures with static elements (toolbar, clock, etc.).

QLED. Monitors built using quantum dot technology (QLED). This technology can be used in matrices of various types. It involves replacing a set of several colour filters used in classic matrices with a special thin-film coating based on nanoparticles, and traditional white LEDs with blue ones. This allows you to achieve higher brightness, colour saturation and colour quality at the same time as reducing the thickness and reducing power consumption. In addition, QLED is well suited for creating curved screens. The flip side of these benefits is the high price.

QD-OLED. A kind of hybrid version of matrices that combine “quantum dots” (Quantum Dot) and organic light-emitting diodes (OLED) in one bottle. The technology takes the best from QLED and OLED: it is based on blue LEDs, self-luminous pixels (instead of external backlighting) and “quantum dots”, which play the role of color filters, but at the same time practically do not attenuate the light (unlike traditional filters) . Thanks to the use of a number of advanced solutions, the creators managed to achieve very impressive characteristics, significantly superior to many other OLED matrices. Among them are high peak brightness from 1000 nits (cd/m²), excellent contrast and black depth, as well as an expanded color gamut (over 120% of the DCI P3 gamut). Such matrices are found mainly in expensive advanced monitors with a large screen diagonal.

— AHVA. A type of matrix created by AU Optronics (a joint venture between Acer and BenQ) as a solution similar to modern IPS. Among the key advantages of this option over analogues is the almost complete absence of colour distortions at all viewing angles.

– PLS (Plane to Line Switching). This type of matrix was developed by Samsung engineers. It is based on the familiar IPS technology. According to some parameters, namely: the brightness and contrast of PLS exceeds IPS by 10%. The main goal of creating a new type of screens was to reduce the cost of the matrix, according to the developer, the production cost was reduced by 15%, which will positively affect the final price of monitors in comparison with IPS counterparts.

— IGZO. Technology introduced by Sharp in 2012. The key difference between IGZO and classic LCD matrices is that for the active layer (responsible for creating the image) it uses not amorphous silicon, but a semiconductor material based on indium gallium oxide and zinc oxide. This makes it possible to create screens with extremely fast response times and high pixel densities, and the technology is considered well suited for ultra-high resolution screens. With all this, the colour rendering characteristics allow the use of IGZO monitors even in the professional field, and the power consumption is very low. The main disadvantage of this option is the high cost.

— UV2A. An LCD display technology developed by Sharp and introduced in 2009. One of the key features of UV2A matrices is that they are based on liquid crystals that are sensitive to ultraviolet light. And it is UV radiation that is used as a control signal — it ensures that the crystals turn in the right direction to form an image. The technical features of such systems are such that the position of individual crystals can be controlled with extremely high accuracy — up to several picometers (with the size of the crystals themselves about 2 nm). According to the manufacturer, this provides two key benefits: no backlight "leakage" and improved light transmission with "open" crystals. The first allows you to achieve very deep and rich blacks, the second provides excellent brightness with low power consumption, and together these two features make it possible to create screens with a very high static contrast ratio — up to 5000: 1. At the same time, we note that the actual contrast characteristics in UV2A monitors can be noticeably more modest — it all depends on the features of a particular matrix and the characteristics that the manufacturer was able or considered necessary to provide.

— Mini LED IPS. A variation on the theme of the familiar IPS-matrix, which is illuminated by an array of reduced LEDs. The small caliber of individual light sources (of the order of 100-200 microns) makes it possible to form a much larger number of zones of controlled local dimming of the screen. Together, this delivers improved brightness, contrast, colour saturation, and black depth, and raises the bar for High Dynamic Range (HDR) technology.

— Mini LED VA. A variety of VA-matrices with a Mini LED backlight system. It consists of many tiny LEDs, which, due to their number, form many times more local screen dimming zones than standard canvases. As a result, Mini LED VA panels boast improved colour reproduction, impressive black depth, and multiple performance improvements in HDR content.

— Mini LED QLED. Behind the plane of the QLED panel in monitors with a Mini LED backlight system are thousands of miniature LEDs no larger than 200 microns in size, which divide the screen into a great many zones with controlled local dimming. They are individually dimmable, allowing full display of HDR content with bright light and deepest black levels.

Resolution

The native resolution of the monitor. Ideally, the resolution of the video signal should be the same, then the quality of the image on the screen will be maximum.

In general, the higher the resolution, the higher the detail and the more advanced the screen is, but the more expensive it will cost (ceteris paribus) and the more power the graphics card will need to work properly at that resolution. As for specific values, they are quite diverse in modern monitors, but all resolutions can be divided into several general categories:

HD (720). Screens suitable for HD video with a resolution of 1280x720. Note that this category also includes models with a resolution of 1024x768 — this figure is somewhat less than necessary to display HD in its original size, but the quality of the HD picture on such a screen still turns out to be quite high. The most popular option among HD monitors is 1366x768, there are also models 1280x768, 1280x800 and non-widescreen (5:3) 1280x1024.

Full HD (1080). Full HD monitors. The classic, most popular version of this resolution is 1920x1080 ( 16:9 format), however, there are other options among monitors, including such specific ones as ultra-widescreen (32:9) 3840x1080, as well as 1600x1200 (a 1920x1080 frame “does not fit into it”) ” in width, but this resolution is still commonly r...eferred to as Full HD). To date, Full HD is a good compromise between image quality, screen cost and graphics card requirements. As a result, it is this format that is most popular among modern monitors.

Quad HD. A kind of intermediate option between the popular Full HD and advanced demanding Ultra HD 4K. It covers resolutions from 1920x1440 to 3200x2400, although most modern Quad HD monitors fit into a narrower range — from 2560x1440 to 3840x1600. Such a screen can be a good option for those who “Full HD is not enough, but 4K is a lot.”

— Ultra HD (4K). This standard assumes a horizontal frame size of approximately 4000 pixels, but specific resolutions may vary. Popular options found in monitors include 3840x2160, 4096x2160, and 4096x2304. Overall, UHD 4K gives you 4 times more pixels on screen than Full HD; such resolutions are typical for high-end monitors and are most often combined with a large diagonal — from 27 "(although there are exceptions).

Ultra HD (5K). An even more advanced standard than UHD 4K, which assumes a horizontal frame size of about 5000 pixels — for example, 5120x2160. It is used extremely rarely, mainly in top professional screens.

— 8K. Further, after 5K, the development of HD standards, which provides for a frame with a horizontal size of about 8000 — for example, one of the 8K resolution options in monitors is 7680x4320. Allows you to get extremely clear and detailed images, but such high-resolution monitors are very expensive, and it is not so easy to find a signal source in such a resolution. Therefore, only single models of 8K monitors are currently on the market.

Response time (GtG)

The time each individual pixel on the monitor takes to switch from one state to another. The lower the response time, the faster the matrix responds to the control signal, resulting in less delay and better image quality in dynamic scenes.

Note that in this case, the gray-to-gray method is used (the time it takes to switch from 10% gray to 90% gray). Pay attention to this parameter if the monitor is specifically purchased for fast-paced games, movie watching, or other applications involving quick screen movements. However, there’s no need to chase the fastest models. It’s not often possible to discern the difference between 1 ms and 5 ms. For most scenarios, monitors with a 4 ms response time will suffice. In any case, it’s best to rely on live impressions for a true comparison.

Brightness

The maximum brightness provided by the monitor screen.

Choosing a monitor with high brightness is especially important if the device is going to be used in bright ambient light — for example, if the workplace is exposed to sunlight. A dim image can be "dampened" by such lighting, making work uncomfortable. In other conditions, the high brightness of the screen is very tiring for the eyes.

Most modern monitors give out about 200 – 400 cd / m2 — this is usually quite enough even in the sun. However, there are also higher values: for example, in LCD panels (see "Type") the brightness can reach several thousand cd/m2. This is necessary taking into account the specifics of such devices — the image must be clearly visible from a long distance.

Dynamic Contrast

Dynamic contrast provided by the monitor screen.

Dynamic contrast refers to the difference between the brightest white at maximum backlight intensity and the deepest black at minimum backlight. In this way, this indicator differs from static contrast, which is indicated with a constant backlight level (see above). Dynamic contrast ratio can be expressed in very impressive numbers (in some models — more than 100,000,000: 1). However, in fact, these figures are poorly correlated with what the viewer sees: it is almost impossible to achieve such a difference within one frame. Therefore, dynamic contrast is most often more of an advertising than a practically significant indicator, it is often indicated precisely in order to impress an inexperienced buyer. At the same time, we note that there are "smart" backlight technologies that allow you to change its brightness in certain areas of the screen and achieve a higher contrast in one frame than the claimed static one; these technologies are found mostly in premium monitors.

Colour space (sRGB)

Monitor colour gamut Rec. 709 or sRGB.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Nowadays, sRGB is actually the standard color model adopted for computer technology; This is what is used in the development and production of most video cards. For television, the Rec. standard, similar in parameters, is used. 709. In terms of the range of colors, these models are identical, and the percentage of coverage for them is the same. In the most advanced monitors it can reach or even exceed 100%; These are the values that are considered necessary for high-end screens, incl. professional.

Video transmission

VGA. A connector designed for transmitting analog video signals back in the era of CRT monitors (especially for them). Today it is considered obsolete and is gradually falling out of use - in particular, due to low bandwidth, which does not allow full work with HD content, as well as double signal conversion when using VGA in LCD monitors (which can become a potential source of interference) .

DVI. A connector for video signal transmission, designed specifically for LCD devices, including monitors. Although the abbreviation DVI originally stands for “digital video interface,” this interface also allows analog data transmission. Actually, there are three main types of DVI: analog, combined and digital. The first type in modern computer technology has almost gone out of use (this function is actually performed by the VGA connector), and a purely digital connector - DVI-D - is indicated separately in our catalog (see below). Therefore, if the monitor’s specifications indicate “just DVI”, most likely we are talking about a combined DVI-I connector. In terms of the characteristics of the analog video signal, it is similar to the VGA described above (and is even compatible with it through a simple adapter); in terms of digital capabilities, it is DVI-D (single-channel, not Dual Link). However, due to the spread of purely digital standards, DVI-I is becoming less and less...common.

DVI-D. A variation of the DVI interface described above that supports exclusively digital video signal format. The standard (Single Link) DVI-D interface allows you to transmit video in resolutions up to 1920x1080 at a frame rate of 75 Hz or 1920x1200 at a frame rate of 60 Hz, which is already enough to work with modern resolutions up to Full HD inclusive. In addition, there is a dual-channel (Dual Link) version of this connector, which has increased bandwidth and allows you to work with resolutions up to 2560x1600 (at 60 Hz; or 2048x1536 at 75 Hz). Accordingly, the specific DVI-D type depends on the monitor resolution. In this case, a single-channel screen can be connected to a dual-channel video card, but not vice versa. Also note that the situation with connectors is similar: Single Link and Dual Link ports are slightly different in design, and a single-channel cable is compatible with dual-channel input/output, but, again, not vice versa.

DisplayPort. An interface originally created for video transmission (however, it can also be used for audio signals - in this DisplayPort is similar to HDMI). Found in many modern monitor models. Note that monitors with DisplayPort inputs are also compatible with Thunderbolt outputs (via an adapter).

The specific capabilities of this connector depend on its version. Modern monitors have the following options:
  • v.1.2. The earliest version commonly used in our time, released in 2010. It was there that features such as 3D support and the ability to connect multiple screens in a daisy chain were first introduced. Version 1.2 allows you to transmit 5K video at a frame rate of 30 fps; working with higher resolutions (up to 8K) is also possible, but with certain restrictions.
  • v.1.3. DisplayPort version released in 2014. It has one and a half times more bandwidth than v.1.2, and allows you to transmit 8K video at 30 fps, 5K at 60 fps and 4K at 120 fps. In addition, this version has a Dual-mode function, which allows you to connect to HDMI and DVI outputs through simple passive adapters.
  • v 1.4. In this version, the maximum frame rate when working with one screen has increased to 120 fps for the 8K standard and to 240 fps for the 4K and 5K standards (data is supposed to be transmitted with compression using DSC - Display Stream Compression technology). Other features include compatibility with HDR10 and the ability to simultaneously transmit up to 32 channels of audio.
  • v2.1. 2022 version using the same physical layer specification as USB4. The interface bandwidth has been doubled compared to v 1.4 (up to 80 Gbit/s, of which 77.37 Gbit/s is available for data transfer). At the same time, it supports connecting displays with resolutions up to 16K at 60 fps, 8K at 120 fps, 4K at 240 Hz and 2K at 480 Hz (without the additional use of DSC - Display Stream Compression technology). DP40 (40 Gbps) cables can now be longer than two meters, while DP80 (80 Gbps) cables can be more than one meter long.


Mini Display Port. A smaller version of the DisplayPort described above, used primarily in laptops; especially popular in Apple laptops. Recently, there has been a trend towards replacing the Mini Display Port with a universal Thunderbolt interface; however, this interface operates through the same connector and provides the same capabilities. In other words, monitors can be connected to Thunderbolt (versions 1 and 2) via a standard miniDisplayPort cable, without using adapters (for v3 you will still need an adapter).

— HDMI. The HDMI interface was originally designed to transmit high-definition video and multi-channel digital audio over a single cable. This is the most popular of modern interfaces for this purpose; HDMI outputs are practically mandatory both for computer video cards and for media centers, DVD/Blu-ray players and other similar equipment.

The presence of several outputs of this type in the monitor allows you to keep it connected simultaneously to several signal sources - for example, a computer and a satellite TV tuner. This way you can switch between sources through software settings without fiddling with reconnecting cables, and also use the PBP function.

At the same time, the port itself has different versions, and the most common in our time are as follows:
  • - v.1.4. The earliest version actively used in our time; appeared in 2009. Supports resolutions up to 4096x2160 at 24 fps, and in the Full HD standard (1920x1080) the frame rate can reach 120 fps; 3D video transmission is also possible.
  • - v.2.0. Version introduced in 2013 as a major update to the HDMI standard. Supports 4K video with frame rates up to 60 fps (due to which it is also known as HDMI UHD), as well as up to 32 channels of audio and up to 4 audio streams simultaneously. Also in this version there is support for ultra-wide format 21:9.
  • - v.2.1. Quite a significant update compared to version 2.0, introduced at the end of 2017. A further increase in throughput made it possible to provide support for resolutions up to 8K at 120 fps inclusive. Improvements have also been made regarding working with HDR. Note that to use all the features of HDMI v 2.1 you need HDMI Ultra High Speed cables, although basic functions are available with regular cables.


USB C (DisplayPort AltMode). Another type of USB interface used to work with video signals. It has a small size (not much larger than a microUSB) and a reversible design that allows you to connect the plug to either side - this makes Type C more convenient than previous standards. At the same time, we note that such a monitor may initially be designed for connection to a USB C output (at least, such an adapter cable may be supplied in the kit); it would not hurt to clarify this point separately.

Thunderbolt interface. Thunderbolt is a data transfer protocol (used in Apple devices), the throughput of which reaches 40 Gbps. The connector itself, as well as the speed, depend on the version: Thunderbolt v1 and v2 use miniDisplayPort (see above), monitors with Thunderbolt inputs are not necessarily compatible with the original miniDisplayPort outputs - it wouldn’t hurt to check this compatibility separately. And Thunderbolt v3 is based on the USB C connector (see above).

USB hub 2.0

a USB hub 2.0 is a set of additional USB ports on the monitor case, to which you can connect various peripherals (provided that the monitor is connected to the computer's USB port with a special cable). This equipment performs two useful functions. First, the hub increases the number of ports available for connection. Secondly, these connectors are located in close proximity to the user, literally at arm's length. However note that splitters are not well suited for connecting devices that require a lot of power via USB (for example, external hard drives without a separate power supply). This is due to the fact that the splitter “divides” the power coming from the computer port equally to all connected devices, and with a “loaded” hub, the power may not be enough at one moment.

Also note that the 2.0 standard is characterized by a bandwidth of 480 Mbps and has long been considered obsolete, but monitors with this interface are still being produced.

USB hub 3.x

The monitor has a USB hub with USB 3.2 connectors.

A USB hub is a set of additional USB ports on the monitor case, to which you can connect various peripherals (provided that the monitor is connected to the computer's USB port with a special cable). This equipment performs two useful functions. Firstly, the hub increases the number of ports available for connection: the USB cable from the monitor occupies only one port on the computer, and in return the user receives several connectors on the monitor. Secondly, these connectors are located in close proximity to the user, literally at arm's length. This is especially useful when working with classic PCs, where the system unit can be located under the table or in another hard-to-reach place, and it would be inconvenient to reach for it every time in search of USB ports.

As for version 3.2, it combines all versions of the third generation. In fact, this standard includes three specifications: USB 3.2 Gen 1 (formerly USB 3.0) with speeds up to 5 Gbps, USB 3.2 Gen 2 (formerly USB 3.1) with speeds up to 10 Gbps and USB 3.2 Gen 2x2 with speeds up to 20 Gb /with. The USB 3.x hub in the monitor can meet any of these specifications, such details should be clarified separately.
Dell U2417H often compared
Dell U2412M often compared