United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Modems

Comparison Huawei K4203 vs Alcatel 410D

Add to comparison
Huawei K4203
Alcatel 410D
Huawei K4203Alcatel 410D
from £19.99 
Outdated Product
Outdated Product
TOP sellers
Device typeUSB modemUSB modem
Connection
Communication generation
2G
3G
2G
3G
Transmission technology
GPRS
EDGE
W-CDMA
HSUPA
HSDPA
HSPA+
GPRS
EDGE
W-CDMA
HSUPA
HSDPA
 
Ports
USB
USB
Features
SIM card slot
Added to E-Catalognovember 2017july 2017

Transmission technology

Data transfer technologies supported by the modem.

GPRS. The oldest communication technology in use today. It was developed as a standard for GSM cellular networks, allowing data to be transmitted in parallel with voice communications and text messages, as well as charging network access by the amount of data transmitted, and not by connection time (as in the previous CSD standard). At the time of its creation, it was very progressive, but now it is considered completely obsolete and is used only in cases where more advanced standards cannot be used.

EDGE. A technology created as a modification of the GPRS described above, which would increase the channel throughput and improve communication reliability. Otherwise, this standard is completely similar to GPRS in terms of its main practical features.

W-CDMA. One of the early third generation ( 3G) communication standards. Used in UMTS networks. One of the main advantages of such networks is the ability to build networks based on the existing GSM infrastructure. Therefore, UMTS, and specifically W-CDMA, is being used by many mobile operators in the early stages of their transition from 2G to 3G.

HSUPA. Third generation (3G) communication technology, an evolution of W-CDMA described above. The name stands for "Hi...gh-Speed Uplink Packet Access" — high-speed packet data transmission in the "from the subscriber" direction. This, in fact, describes the purpose of this technology: it increases the speed of data transfer from the modem to the base station, which can be useful for some specific tasks — for example, video communications.

— HSDPA. Further, after HSUPA, improvement of the W-CDMA standard (see above). It belongs to third generation (3G) networks, but is considered an “extended” standard, which is why HSUPA-enabled networks can be referred to as 3.5G, 3G+, etc. The name itself — "High-Speed Downlink Packet Access" — translates as "high-speed packet data transmission from the base station to the device."

— HSPA+. Today's most advanced third-generation communication standard based on UMTS networks (W-CDMA). Thanks to a number of improvements, it allows to achieve higher speeds than the options described above, approaching fourth-generation networks in terms of capabilities; therefore, sometimes conventionally referred to as 3.75G.

— WiMAX. Initially, WiMAX was created in two versions — "mobile" and "stationary"; the vast majority of modern cellular modems use the second option. It belongs to the fourth generation standards — 4G (whereas "mobile" was a competitor to 3G technologies, although sometimes it is also referred to as a 4th generation connection for marketing purposes). Some time ago, WiMAX was actively promoted as an alternative to wired broadband Internet connection (in particular, as the best option for areas, where it is difficult to reach the cable). However, now this standard is gradually losing popularity — in particular, in connection with the development and promotion of a more advanced LTE (which also does not have a division into "mobile" and "stationary" varieties).

— LTE (up to 173 Mbps). The fourth generation cellular communication standard, the most popular 4G technology today — in particular, due to the fact that it is a further development of W-CDMA/UMTS and can be implemented by improving existing networks (both UMTS and CDMA2000). Another reason for the popularity is the same convenience for both stationary and mobile equipment. On the other hand, when choosing a modem of this standard, you should keep in mind that LTE bands and channels may differ in different countries, so the support of this technology does not guarantee compatibility with a particular network. It should also be taken into account that in some countries LTE networks are only at the deployment stage, and in some they are not available at all.

— EV-DO (Rev.A). EV-DO is a third-generation (3G) data transmission technology used in CDMA mobile networks (not to be confused with W-CDMA, built on another basic standard — UMTS). Note that in some countries this type of 3G network became widespread much earlier than W-CDMA and its modifications, and for a number of technical reasons it is mainly used for data transmission — that is, for the operation of 3G modems. As for Rev.A, this is the second and most common version of the EV-DO standard.

— EV-DO (Rev. B). The third version of EV-DO technology, the development and improvement of Rev.A; see above for details. Here we note that this standard is also often used as a 3G data connection; its coverage area is not as extensive as the previous version, but still covers most major cities and their surroundings. It is also worth considering that in order to use all the features of Rev.B, you need a modem that supports this version, and not all modern EV-DO devices can do this.

When evaluating the capabilities of a modem, note that the speed values given for each technology are the maximum, which in fact is achievable only under perfect conditions. The actual values of the speed, usually, are lower than the potential ones; they may depend both on the specs of the network, signal strength and other technical issues, and on the policy of the operator and the conditions of a particular tariff.
Huawei K4203 often compared