United Kingdom
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   Plotter Printers

Comparison Canon imagePROGRAF iPF770 vs Canon imagePROGRAF iPF830

Add to comparison
Canon imagePROGRAF iPF770
Canon imagePROGRAF iPF830
Canon imagePROGRAF iPF770Canon imagePROGRAF iPF830
from £5,923.16 
Outdated Product
from $5,258.56
Outdated Product
TOP sellers
Product Typeinkjetinkjet
Paper sizeA0A0+
Output Typecolourcolour
Placementfloorfloor
Printing
Max resolution2400x1200 dpi2400x1200 dpi
Sheet printing time48 с42 с
Drop volume4 pl4 pl
Sheet printing
 /before 1.6 m/
 /before 1.6 m/
Roll printing
 /up to 18 m/
 /up to 18 m/
Specs
Media width (min)203 mm203 mm
Media width (max)914 mm1118 mm
Max. roll diameter150 mm150 mm
Number of rolls11
Paper grammage (min)80 g/m²
Paper grammage (max)255 g/m²
Data transfer
PC connection (USB)
network connection (LAN)
PC connection (USB)
network connection (LAN)
General
Number of cartridges65
Cartridge modelPFI-107BK, PFI-107MBK, PFI-107C, PFI-107M, PFI-107YPFI-307BK, PFI-307MBK, PFI-307C, PFI-307M, PFI-307Y
Built-in memory256 MB512 MB
Storage capacity320 GB
Displaymonochromemonochrome
Noise level46 dB52 dB
Power consumption140 W190 W
Dimensions with stand (WxDxH)1304x887x1062 mm1893x975x1144 mm
Weight64.6 kg138 kg
Added to E-Catalogjuly 2015july 2015

Paper size

The paper size the plotter is designed to operate with. Most models use ISO 216 formats, identified by the letter A followed by a digit. These formats include the popular A4, but plotters usually work with larger paper:
  • A0+. This marking means that the plotter is able to work with sheets larger than A0 (see below). The A0+ format itself provides a sheet width of 914 mm, however, in this case, support for wider media is usually provided — about 1100 mm (1050 – 1150 mm) in the most modest models of this format ( A0+ 44 ") and 1500 mm or more in the largest ( A0+ ≥ 60")
  • A0. Paper of this format has a size of 1189x841 mm.
  • A1. Paper size 841x594 mm — in other words, half of the A0 format.
  • A2. A sheet of this format is approximately the size of a newspaper spread — 420x594 mm, half the size of A1. Considered relatively small by plotter standards.
  • A3. The smallest format found in modern plotters: 297x420 mm, that is, only twice the standard A4 (in other words, with a magazine spread). Used in few desktop models (see Installation) — particularly, textile devices (see Product Type) for printing on T-shirts and other similarly sized clothes.
It is also worth noting that many models are able to work with other sizes. Moreover, we are talking not only about reduced, but also about la...rger options: the maximum media width (see below) often exceeds the standard paper size.

Sheet printing time

Approximate time taken by the plotter to print one sheet.

This indicates for the paper size that the machine was originally designed for (see "Paper Size"). And it is approximate because it is usually given for optimal or almost optimal printing conditions: low quality and resolution, relatively simple images, etc. So the actual print time of the sheet may differ from the claimed one in one direction or another, depending on the operating parameters — starting from the mentioned quality and resolution to the type of media. However, according to the figures indicated in the specs, it is quite possible to evaluate different models and compare them with each other: the difference in the claimed time, usually, will proportionally correspond to the difference in the actual printing speed.

It is also worth noting that this time is usually indicated by the duration of the printing process itself — from the capture of the sheet by the feeder to the output of the completed print from the device. Interruptions inevitably occur between printing individual sheets, so that the total printing time is longer than the printing time of a sheet multiplied by the number of sheets. For example, a device with a time consumption of 36 sec per sheet theoretically should print about 100 sheets per hour (1 h = 3600 s, 3600/36 = 100), but in fact such a plotter usually produces about 70 – 75 sheets in this time.

Media width (max)

The largest width of paper or other media that the plotter can handle. The larger this parameter, the larger the materials that can be printed on the device; however, the dimensions, weight and cost of the plotter also increase markedly due to this.

Paper grammage (min)

The lowest grammage of paper that the plotter can print normally on. Grammage is expressed in grams per square metre; accordingly, the more dense the paper, the thicker it is, and the greater the difference between the minimum and maximum paper grammage, the greater the range of materials the plotter can operate with.

The use of materials that are too thin can lead to a number of troubles: multi-sheet picking, creasing, jamming, etc. Therefore, if you plan to use low-grammage paper, you should pay special attention to this characteristic.

Paper grammage (max)

The highest paper grammage that the plotter can handle normally. For details about grammage, see "Paper grammage (Min)"; and you should pay attention to its maximum value if you plan to use thick materials. Do not try to print on more dense media than it is specified in the specs of the device: even if the plotter can handle such paper normally, it can cause serious damage.

Number of cartridges

The number of individual cartridges the plotter needs to operate.

Each cartridge is responsible for its base colour used in printing. Monochrome plotters (see "Output Type"), by definition, use only one cartridge, for black colour and for such devices this parameter is usually not specified at all. But in colour printing, where all available shades are obtained by mixing basic colours, the number of such colours (and, accordingly, cartridges) can be different.

The most modest of modern colour plotters are designed to work with 4 or 5 cartridges. The first option corresponds to the CMYK colour scheme with 4 basic colours — this is the minimum required for full colour printing. In turn, 5 cartridges usually mean a CMYK colour scheme, supplemented by a separate supply of black ink for monochrome images — this allows you not to waste consumables for such images that may be needed for colour prints, and also to print monochrome even with empty colour cartridges, and vice versa.

In general, these sets of basic colours are inexpensive, while they are able to provide fairly good quality prints; so plotters for 4 – 5 cartridges are very popular nowadays. However, the use of additional basic colours can significantly increase the quality of the image, primarily the reliability of colour reproduction. Thereby, advanced plotters can provide a larger number of cartridges — 6 – 10, and s...ometimes more. Such devices are quite expensive and difficult to maintain, but they are indispensable for printing materials with high requirements of colour quality.

Cartridge model

Models of cartridges used in the plotter. With this info, you can easily find original consumables for the device.

Built-in memory

The amount of built-in memory provided in the design of the plotter.

Such memory is used to store various service data: print tasks, settings profiles, etc. Due to this, the plotter becomes more "independent": for example, many models allow you to continue printing even when the master PC is turned off.

We emphasize that in this case we are talking about solid-state flash memory, which is used mainly for "operational" service information. The capacity of such memory is relatively low, it is measured in megabytes; but in addition to it, the design may include a larger storage capacity — usually a traditional hard drive. For more information about it, see "Drive Capacity".

Storage capacity

The capacity of the built-in storage installed in the plotter.

First of all, we note that this drive should not be confused with the built-in memory (see above): in this case, we are talking about a storage designed for long-term storage of large amounts of data. Accordingly, such a storage differs from the mentioned memory in a larger capacity — its volume is already calculated in gigabytes. In addition, the built-in drive is usually a hard drive — this type of storage is better suited for the application described. Such a disk is intended mainly for storing various graphic files — footage, layouts for printing, data from a scanner (if available — see above), etc. The larger its volume, the more files can be simultaneously stored in the plotter's memory.

It is often more convenient to upload files into the device's memory in advance and send them to print directly from the control panel than to turn on the master PC every time — especially if you have to print often and a lot, and PCs are sometimes unavailable (for example, due to mismatched work schedules from printers and designers). On the other hand, such functionality is relevant mainly for powerful performant plotters, and the availability of a built-in drive significantly affects the cost. Therefore, this feature is found mainly in fairly advanced models.
Canon imagePROGRAF iPF770 often compared
Canon imagePROGRAF iPF830 often compared