Mount
—
Indoors. Models designed for indoor installation and designed for relatively favorable conditions, without precipitation, dust, temperature changes and other similar influences. These cameras do not require the enhanced protection required for outdoor installations (see below), making them less expensive. Their main disadvantage is also associated with the lack of the mentioned protection — we are talking about the impossibility of full-fledged use outdoors: outdoor installation, even under a canopy or in another relatively protected place, can eventually lead to premature damage to the camera.
—
Street. Cameras designed from the ground up for outdoor use and equipped with the appropriate protections — most notably a rugged housing that provides protection against moisture, pollution, heat/frost, etc. In addition, the design may provide special anti-vandal solutions — for example, automatic notification of an attempt to damage the camera; and in themselves such models are more resistant to vandalism than indoor cameras. Of course, if necessary, an outdoor camera can be installed indoors; however, said protection has a corresponding effect on price, and the real need for such characteristics is only in heavily polluted places such as industrial workshops or closed construction sites.
Body type
The case type describes not only its shape, but also some layout features that can affect the functionality of the product.
—
Dome. In accordance with the name, on the body of such a camera there is a characteristic transparent dome, inside of which there is a lens — and, usually, controlled by PTZ (see "Camera capabilities"). The dome not only protects the optics from various adverse factors (such as dirt or moisture), but in many models it also hides the position of the lens; for this it is darkened. Thus, the object of observation does not know where the camera is pointed, which is useful in some cases (for example, when observing a suspicious visitor in a supermarket). At the same time, for a number of reasons, this option is poorly suited for advanced optics with large dimensions.
—
Directed. Directional cameras are called cameras in which the lens "looks" along the body. This arrangement allows the use of powerful lenses with good aperture and optical zoom (see below), but the cameras are also quite bulky.
— Directional (
without a lens). A variation of the directional cameras described above, which has interchangeable lenses; The lenses themselves are usually not included in the kit, they must be purchased separately. The meaning of such a configuration is that the user can independently choose optics for specific needs. This categor
...y includes mostly fairly advanced models.
— Hidden. This category includes cameras of a small size, which allows them to be installed discreetly — for example, in a wall niche. However, even with an external installation (this option, usually, is also allowed), such devices are also very inconspicuous due to the mentioned compactness. By itself, the body shape of hidden cameras is most often close to directional (see above), although there may be different options.
— Desktop. Cameras designed to be mounted on a tabletop or other flat, horizontal surface. For this, an appropriate stand is provided in the design; it can have movable mounts that allow you to tilt the camera and rotate it from side to side. The main advantage of such cameras is the utmost ease of installation; this, in particular, makes them almost perfect for home use.
— Portable with fastening. In fact, it is a kind of desktop cameras (see the relevant paragraph), in which the stand can be used not only for installation on a horizontal surface, but also for wall mounting. From other "wall" varieties — hidden and directional (see relevant paragraphs) — cameras of this type differ in layout: their body is usually flat, rectangular or oval, and the lens is located on the widest edge (similar to how it is done in mobile phones ). The mount is often made movable, to adjust for tilt and/or rotation.Connection
-LAN. The LAN (Ethernet) interface was originally intended for building wired computer networks. Cameras with this connector, usually, also work as network devices. The advantage of this option over the Wi-Fi described below can be called a higher actual bandwidth, over
BNC — the ability to connect without additional equipment, directly to a standard network router used for a regular computer network. Of the shortcomings, one can only note the need to pull the wire, but this point is common to all wired connection options. For the rest of the features, LAN is the most convenient, thanks to which it has become widely used in modern security cameras.
—
Wi-Fi. The Wi-Fi connection was originally a wireless analogue of the LAN described above and was used to connect to computer networks. When working in such networks, this connection is similar to LAN in the sense that it allows the camera to work through a regular router (of course, supporting Wi-Fi). At the same time, Wi-Fi is more convenient due to the lack of wires, however, with an abundance of other wireless devices connected to the router, the channel bandwidth and image quality can noticeably deteriorate. Note that recently it is also possible to use this connection in the Direct mode — for direct connection of the camera with another device, for example, connecting the camera to a smartphone (see "Design and
...capabilities — P2P"). However, this option is less common.
— BNC. Abbreviation for Bayonet Neill Concelman. A bayonet type connector commonly used for analogue video signal transmission. Refers to professional video interfaces, special equipment is required to work with such a camera. However, by themselves cameras with connectors of this type, usually, belong to the lower price range. This is due to limited connectivity via BNC — only a video signal can be transmitted through it, which limits the functionality of such cameras compared to models that work via LAN or Wi-Fi (see above).
— 3G / 4G. Internet connection via 3G / 4G mobile networks; usually, for this you need to install a SIM card from a mobile operator in the camera. The speed of such networks allows, among other things, to broadcast video in a fairly high resolution. So such a connection (of course, with coverage) is well suited not only as a fallback in case of interruptions to the Internet, but also as the main communication channel if there is no fixed Internet connection at all. A typical example of the second situation is the observation of a country house located "far from civilization", but in the zone of reliable mobile communication reception. Moreover, in both cases, you can contact the camera via the Internet from anywhere in the world. Design and features
— PTZ (controlled). PTZ is an abbreviation for camera control capabilities - “pan, tilt, zoom”. Accordingly, cameras with this feature are equipped with a movable lens that allows you to aim at the desired object; but the magnification can be either optical (see below) or digital. The advantages of
PTZ cameras are obvious: their view is not limited to one position, it can be adjusted at the operator’s request. And some models may provide advanced functions, such as automatic targeting and focusing on movement. On the other hand, similar systems cost accordingly.
- Private mode. A feature that allows you to temporarily pause the camera to protect the privacy of people in its field of view. In private mode, the camera temporarily stops recording video, broadcasting images, and performing other actions related to video surveillance. It is important to note that the implementation of private zones or temporary disabling of recording is available in almost any video surveillance camera. In this case, we are not talking about software capabilities, but about creating conditions in which the camera cannot physically record. So, some models hide the lens inside the body, others turn their “look” away in a predetermined direction (for example, to the corner of a wall). Private mode can be activated forcibly (by pressing a button on the camera body or in a mobile application) or according to a preset schedule.
—
PoE power supply. Power technology used in cameras with wired LAN connections. The PoE function allows you to supply power to such a camera through the same cable that is used to transmit the signal - this eliminates the need to run an additional wire to the outlet or use batteries/rechargeable batteries. Of course, to use this technology, the connector of the recorder (or other device) to which the camera is connected must also support it. But it’s worth considering that there are different PoE standards, which primarily differ in power (802.3af power up to 13 W, PoE 802.3at - 25.5 W).
—
PoC power supply. An analogue of PoE technology used in traditional cameras: it allows you to supply power through the same cable that is used for the video signal, and thus do without connecting to an outlet and without batteries/batteries. The difference is that PoC operates over a coaxial cable with a BNC connector. Of course, to use this function it must be provided both in the camera itself and in the recorder.
—
Panoramic shooting. This feature means that the camera has multiple lenses and covers a horizontal angle of at least 180°, providing a wide field of view when the body is stationary. Such a field of view can be achieved with one fisheye lens (see the corresponding paragraph); however, panoramic shooting has one important advantage: the level of distortion in such video is much lower, even at the edges. On the other hand, the presence of several “eyes” has a corresponding impact on the price and dimensions.
—
Setting up a region of interest (ROI). This function allows you to define individual zones in the camera's field of view. Note that the tasks of the selected areas may be different. One option is to configure motion detection zones in the frame, which can reduce the level of false alarms. The second possible implementation is to reduce the quality of less important areas of the image to save storage space. The latter can be especially useful when there is a shortage of data storage capacity, and also if the camera uses communication channels with limited speed or traffic volumes (for example, a 3G/LTE mobile network). Either way, the Region of Interest (ROI) feature reduces camera strain and lets you focus on what's important to you first.
-
Light sensor. The presence of a light sensor in the camera design. As a rule, this sensor is used to determine the characteristics of the surrounding environment and automatically adjust to its characteristics - in particular, switching between day and night modes, turning on IR illumination (see below), etc.
—
Motion detection. Cameras with this feature are able to detect movement in the field of view. This function is convenient because the vast majority of situations that need to be recorded during video surveillance are associated with movement in the frame. The specific reaction to movement may be different: in some models, recording is turned on, others also send a notification to the recorder or other device, others are able to turn after a moving object, etc. Cameras with this function are especially convenient for monitoring objects where movement is rare - for example, warehouses or underground parking lots at night: for example, turning on motion-based recording only saves storage space and makes it easier to view footage.
—
Sound detection. Function for detecting sounds in a protected area. Having “heard” a sufficiently loud sound, a camera with this function can react in one way or another: start recording, sound a warning or alarm, etc. Some models can even play the role of acoustic break sensors, accurately detecting a characteristic impact on the glass and the sound of shrapnel. Support for audio detection automatically means the presence of a microphone (see the corresponding paragraph).
—
Microphone. The presence of a microphone in the camera design allows it to record not only the image, but also the sound. This allows you to get a more complete picture of what is happening when recording. In addition, a microphone can be useful if the person in front of the camera wants to communicate something to the operator, and if there is a feedback speaker (see below), even a full dialogue is possible.
—
Feedback speaker. The camera has its own built-in speaker. One of the most popular uses of this feature is indicated in the name - it is the operator’s feedback from people near the camera. Thanks to the speaker, you can, for example, voice directly through the camera a hint for a lost visitor, a warning or order for an intruder, etc. In addition, this function can be used for other purposes - in particular, to generate an alarm.
-
Mobile app. The ability to work with the camera through an application installed on a gadget such as a smartphone or tablet. As a rule, this control method gives access to both broadcasting/saving video and most settings; but the specifics of the communication between the gadget and the camera may be different. Thus, modern applications often provide for the possibility of remote access via the Internet from anywhere in the world; however, there is another option - a direct communication (usually via Wi-Fi), which only works in the immediate vicinity of the camera. These nuances should be clarified separately. Be that as it may, the mobile application is convenient in that it can be installed on almost any modern smartphone or tablet running Android or iOS, turning the gadget into a portable camera control station.
—
Motion alert. A function found in cameras with motion detectors (see above). When motion is detected in the frame, such models are capable of not only taking their own actions (for example, turning on recording), but also sending notifications to the user in one way or another. Specific methods for transmitting alerts may be different - email, SMS, notification on a special web page, etc. But in any case, this function makes it easier to track the observed object and reduces the risk of missing an important event in the frame.
—
Alarm input/output. As a rule, cameras with this function are equipped with both inputs and outputs; the number of both may be more than one. These connectors are used to transmit control signals to various components of the security system; they allow you to build a very advanced system and provide additional capabilities for managing its functions. Thus, alarm inputs allow the camera to “react” to commands from other elements - for example, turn on when an electronic lock on the door is triggered. And the outputs, accordingly, are used to transmit commands to external devices - for example, to turn on the spotlight when motion is detected in the frame.
—
Audio input/output. The presence of audio input and/or output in the camera design. This feature makes it possible to work with sound, but the features of this work may vary, depending on the specific set of connectors. The audio input itself makes it possible to connect an external microphone, and the audio output allows you to output sound to an external device (for example, a recorder or an amplifier with speakers) via a separate channel. At the same time, these connectors can be used one at a time. For example, a camera with a built-in microphone may only have an audio output, but a model with a LAN or Wi-Fi communication is capable of transmitting an audio signal through the same channel, and for such cameras an audio input is sufficient.
— IR illumination. The presence of an infrared illumination system in the camera design. This illumination is used for operation in night mode: IR illumination is invisible to the naked eye (you can only notice a faint reddish glow of the backlight LEDs, and even then not always), but is well perceived by the matrices of modern surveillance cameras. The ability to do without visible light sources is convenient for a number of reasons: in particular, such work hardly reveals the camera.
—
LED backlight. The camera has an LED backlight. Like the infrared illumination described above, this backlight is designed to work in the dark; however, it provides light that is visible to the human eye, allowing the camera to produce a relatively natural-looking color image.
-
Card reader. A device for reading removable memory cards, usually standard SD or microSD (specific types of supported cards should be clarified separately). This device performs two main functions. Firstly, it allows you to equip the camera with its own drive - this provides an additional guarantee in case of failures in the external recorder and even allows you to record without any additional equipment at all. Secondly, memory cards allow you to conveniently exchange data with laptops, PCs and other external devices - first of all, transfer footage onto them.
Matrix type
The type of matrix installed in the surveillance camera.
— CMOS. Abbreviation for "complementary metal-oxide-semiconductor" (complementary metal-oxide-semiconductor structure, CMOS). The advantages of CMOS matrices are low cost, low power consumption, as well as high image processing speed and compact dimensions compared to CCDs. The main disadvantage of this technology is the increased image noise, especially at high sensitivity. To eliminate this shortcoming, there are various design tricks, but manufacturers often do not use them for the sake of the low cost of the camera. As a result, CMOS matrices are typical mainly for relatively inexpensive models.
— CCD. Abbreviation for "charge-coupled device" (charge-coupled device, CCD). This type of sensor is more expensive than CMOS and bulkier, but less prone to heat noise and generally more advanced. However CCDs don't handle point light sources very well; however, in this case, manufacturers just quite often use special technologies to neutralize this drawback. Such matrices are typical for advanced surveillance cameras.
— DIS. Abbreviation for "Digital Image System". The key feature of this type of matrices is that they combine both the photosensitive element itself and the image processor in one chip. This reduces the dimensions of cameras with DIS sensors and reduces their cost, while such devices can even surpass similar CCD and CMOS models in image quality. In addition, DIS matrices...are well tolerated by low temperatures (down to -40 °C), which is indispensable for outdoor cameras (see "Use").
Matrix size
The size of the matrix installed in the surveillance camera (diagonally).
In general, larger sensors (with the same resolution and sensor type) are considered more advanced: they get more light, which has a positive effect on image quality (especially in low light). On the other hand, increasing the size affects the cost of the entire device; and in some cases (for example, if the camera is not planned to be used in twilight and darkness), a relatively small sensor may be quite suitable.
As for specific dimensions, the most modest cameras in terms of this indicator have matrices of
1/4 "or less. Models with sensors of
1/3.8" - 1/3" and
1/2.9" - 1/2" are very popular, these values can be called average. And in advanced devices, diagonals and
more than 1/2 "(up to 1/1.7") are found.
Number of megapixels
Camera sensor resolution in megapixels (millions of pixels).
The higher the resolution of the matrix, the higher the video resolution can be (see below), the more detailed the image is capable of providing the camera. At the same time, note that as the number of megapixels increases (without changing the size of the matrix), the size of each individual pixel decreases, which increases the likelihood of noise and deterioration in the overall image quality. Therefore, high resolution in itself is not necessarily a sign of high quality — a lot depends on other things, for example, on the size of the matrix (see above).
As for specific values, in the most modest matrices it does not exceed 1.3 MP, which corresponds to the maximum
HD resolution.
2 MP sensors allow for already Full HD resolution (usually 1920x1080 or 1600x1200),
3 MP,
4 MP,
5 MP and
6 MP are capable of better resolution, but still do not reach
4K, which is typical for 8 MP.
Video resolution
The maximum video resolution that the camera can capture.
The higher the resolution of the video, the more details you can see on it, the less details will be blurry. On the other hand, high resolution means large volumes of video materials, which, accordingly, requires capacious media for their storage and fast communication channels for broadcasting video in real time. Yes, and this indicator significantly affects the cost of the camera.
Frame rate
The maximum frame rate in the video captured by the camera.
The higher the frame rate, the clearer the image, the less noticeable blurring when moving in the frame (especially fast). On the other hand, this indicator affects the amount of information recorded during shooting, as well as the cost of the camera itself. Therefore, it makes sense to specifically look for
a video surveillance camera with high-speed shooting(45 fps and higher) only if a clear recording of fast moving objects is important to you.