Dark mode
United Kingdom
Catalog   /   Photo   /   Digital Cameras

Comparison Panasonic DMC-FZ1000 vs Sony RX10

Add to comparison
Panasonic DMC-FZ1000
Sony RX10
Panasonic DMC-FZ1000Sony RX10
from £985.00 
Expecting restock
from £750.80 
Expecting restock
TOP sellers
Main
Large (for this class) 1" matrix. 16x optical zoom. Five-axis optical stabilizer. Choice between mechanical and electronic shutter. 4K video recording. Wi-Fi module and NFC. Swivel screen.
Camera typedigital compactdigital compact
DxOMark rating64
Sensor
SensorCMOS (CMOS)CMOS (CMOS)
Sensor size1" (13.2x8.8 mm)1" (13.2x8.8 mm)
Total MP20.9
Effective MP number20.120.2
Maximum image size5472x3648 px5472x3648 px
Light sensitivity (ISO)125 - 1280080 - 25600
RAW format recording
Lens
Aperturef/2.8 - f/4.0f/2.8
Focal length25 - 400 mm24 - 200 mm
Optical zoom168.3
Manual focus
Image stabilizationopticaloptical
Min. focus distance30 cm
Macro shooting, from3 cm
Photo shooting
Number of scene programs9
HDR
2 control dials
White balance measuring
Exposure compensation± 5 EV, in 1/3 EV steps± 3 EV, in 1/3 EV steps
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 50 fps1920x1080 px 60 fps
Ultra HD (4K)3840x2160 px 30 fps
File recording formatsMJPEG, AVCHDAVCHD, MPEG4 (H.264)
Manual video focus
Maximum video length
time limit
 
Connection ports
HDMI v 1.4
headphone Jack
microphone Jack
mini HDMI v 1.4
headphone Jack
microphone Jack
Focus
Autofocus modes
one shot
tracking
in face
one shot
tracking
in face
Focus points49 шт25 шт
Viewfinder and shutter
Viewfinderelectronicelectronic
Viewfinder crop0.7 x
Frame coverage100 %
Shutter speed60 - 1/16000 с30 - 1/3200 с
Continuous shooting50 fps10 fps
Shutter typemechanicalmechanical
Screen
Screen size3 ''3 ''
Screen resolution921 thousand pixels1228 thousand pixels
Rotary display
Additional screen
Memory and communications
Memory cards typesSD, SDHC, SDXCSD, SDHC, SDXC
Communications
Wi-Fi 4 (802.11n)
NFC
smartphone control
Wi-Fi 4 (802.11n)
NFC
smartphone control
Flash
Built-in flash
Application range13.5 m1 - 10 m
External flash connect
Power source
Power source
battery
battery
Battery modelDMW-BLC12PPNP-FW50
Battery capacity1200 mAh1080 mAh
Shots per charge360 шт420 шт
General
Case/case modelLCJ-RXE
Charger modelBC-TRW
Console/synchronizer modelRM-VPR1
Materialaluminium / plastic
Dimensions (WxHxD)136.8х98.5х130.7 mm129х88х102 mm
Weight831 g813 g
Color
Added to E-Catalogjune 2014june 2015

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Effective MP number

The number of pixels (megapixels) of the matrix directly involved in the construction of the image, in fact — the number of points from which the captured image is built. Some manufacturers, in addition to this parameter, also indicate the total number of MPs, taking into account the service areas of the matrix. However, it is the effective number of MPs that is considered the main indicator — it is this that directly affects the maximum resolution of the resulting image (see “Maximum image size”).

A megapixel is 1 million pixels. Numerous megapixels ensures high resolution of the captured photos, but is not a guarantee of high-quality images — much also depends on the size of the sensor, its light sensitivity (see the relevant glossary items), as well as hardware and software image processing tools used in the camera. Note that for small matrices, high resolution can sometimes be more of an evil than a blessing — such sensors are very prone to the appearance of noise in the image.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

Aperture

Aperture of the lens installed in the camera or supplied with it in the kit (for models with detachable optics).

In a simplified way, this parameter can be described as the ability of the lens to transmit light - in other words, how much the light flux weakens when passing through the optics. It is believed that two main indicators affect the characteristics of light transmission: the size of the relative opening of the lens and its focal length. Aperture is the ratio of the first indicator to the second; in this case, the size of the active hole is taken as one and is generally omitted when recording, as a result, such a recording looks, for example, like this: f / 2.0. Accordingly, the larger the number after the fraction sign, the lower the aperture ratio, the less light the lens transmits.

Zoom lenses (zoom lenses), as a rule, have different aperture values for different focal lengths. For such optics, two values of this parameter are indicated in the characteristics, for the minimum and maximum focal lengths, for example, f / 2.8–4.5. There are also vario lenses that maintain a constant aperture over the entire range of focal lengths, but they are much more expensive than analogs with variable aperture.

The high light transmission of the lens is important if the camera is planned to be used for shooting in low light conditions or for shooting fast moving objects: high-aperture optics allow you to shoot at low sensor sensitivity (which...reduces the likelihood of noise) and at low shutter speeds (at which moving objects are less blurry) . This parameter also determines the depth of field of the imaged space: the higher the aperture ratio, the smaller the depth of field. Therefore, for shooting with artistic background blur (“bokeh”), it is recommended to use fast lenses.

Focal length

Focal length of the camera lens.

Focal length is such a distance between the camera matrix and the optical center of the lens, focused at infinity, at which a clear and sharp image is obtained on the matrix. For models with interchangeable lenses ( mirrorless cameras and MILC, see “Camera Type”), this parameter is indicated if the camera is supplied with a lens (“kit”); Let us recall that, if desired, optics with other characteristics can be installed on such a camera.

The longer the focal length, the smaller the viewing angle of the lens, the higher the degree of approximation and the larger the objects visible in the frame. Therefore, this parameter is one of the key for any lens and largely determines its application (specific examples are given below).

Most often in modern digital cameras, lenses with a variable focal length are used: such lenses are able to zoom in and out of the image (for more details, see "Optical Zoom"). For "DSLRs" and MILC, specialized optics with a constant focal length (fixed lenses) are produced. But in digital compacts, "fixes" are used extremely rarely, usually such a lens is a sign of a high-end model with specific characteristics.

It should be borne in mind that the actual focal length of the lens is usually given in the characteristics of the camera. And the viewing angles and the general purpose of the optics are determined not only by this parameter, but also...by the size of the matrix with which the optics are used. The dependence looks like this: at the same viewing angles, a lens for a larger matrix will have a longer focal length than a lens for a small sensor. Accordingly, only cameras with the same sensor size can be directly compared with each other in terms of lens focal length. However, to facilitate comparisons in the characteristics, the so-called. EGF - focal length in 35 mm equivalent: this is the focal length that a lens for a full frame matrix having the same viewing angles would have. You can compare by EGF lenses for any matrix size. There are formulas that allow you to independently calculate the equivalent of 35 mm, they can be found in special sources.

If we talk about a specific specialization, then the EGF up to 18 mm corresponds to ultra-wide-angle fisheye lenses. Wide-angle is considered "fixed" optics with EGF up to 28 mm, as well as vario lenses with a minimum EGF up to 35 mm. Values up to 60mm correspond to "general purpose" optics, 50 - 135mm are considered optimal for shooting portraits, and higher focal lengths are found in telephoto lenses. More detailed information about the specifics of various focal lengths can be found in special sources.

Optical zoom

The magnification factor provided by the camera by using the capabilities of the lens (namely, by changing its focal length). In models with interchangeable lenses (see “Camera type”), indicated for the complete lens, if available.

Note that in this case the magnification is indicated not relative to the image visible to the naked eye, but relative to the image produced by the lens at minimum magnification. For example, if the characteristics indicate an optical zoom of 3x, this means that at the maximum magnification, objects in the frame will be three times larger than at the minimum.

The degree of optical zoom is directly related to the range of focal lengths (see above). You can determine this degree by dividing the maximum focal length of the lens by the minimum, for example 360mm / 36mm=10x magnification.

To date, optical zoom provides the best "close" image quality and is considered to be superior to digital zoom (see below). This is due to the fact that with this format of work, the entire area of \u200b\u200bthe matrix is constantly involved, which allows you to fully use its capabilities. Therefore, even among low-cost models, devices without optical zoom are very rare.

Min. focus distance

The minimum distance from the camera lens to the object being shot, at which the lens is able to focus in the normal shooting mode (not with macro shooting, see "Macro shooting, about it").

Macro shooting, from

The minimum distance from the lens to the object being filmed, at which the camera optics is able to focus when the camera is in macro mode. Macro shooting is a special mode of operation designed to obtain large images of small objects; the distances to the objects being shot during macro shooting, usually, do not exceed 10 cm. The smaller the minimum distance for macro shooting, the larger and more detailed image the device allows you to get in this mode (ceteris paribus).
Panasonic DMC-FZ1000 often compared