Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Vivitek DH268 vs BenQ MH534

Add to comparison
Vivitek DH268
BenQ MH534
Vivitek DH268BenQ MH534
Compare prices 1Outdated Product
TOP sellers
Main functionpresentationspresentations
Lamp and image
Lamp typeUHP
Lamp modelXX5050002200
Service life5000 h4500 h
Service life (energy-saving)10000 h10000 h
Lamp power203 W203 W
Brightness ANSI Lumens3500 lm3300 lm
Dynamic contrast15 000:115 000:1
Colour rendering1.07 billion colours
Horizontal frequency15 – 102 kHz15 –102 kHz
Frame rate23 –120 Hz23 – 120 Hz
Projection system
TechnologyDLPDLP
Size0.65"
Real resolution1920x1080 px1920x1080 px
Image format support16:9, 16:10, 4:316:9, 16:10, 4:3
Projecting
Rear projection
Throw distance, min1.1 m
Throw distance, max8.3 m
Image size40 – 240 "30 – 300 "
Throw ratio1.37:1 – 1.64:11.37:1 – 1.64:1
Optical zoom1.2 x1.2 x
Zoom and focusmanualmanual
Lens shift
Keystone correction (vert), ±40 °40 °
Features
Features
3D support
3D support
Hardware
Number of speakers11
Sound power2 W2 W
Video connectors
VGA
S-Video
composite
VGA
S-Video
composite
HDMI inputs22
HDMI versionv 1.4
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
Service connectors
COM port (RS-232)
USB (slave)
COM port (RS-232)
USB (slave)
General
Noise level (nominal)31 dB32 dB
Noise level (energy-saving / quiet)28 dB29 dB
Power sourcemainsmains
Power consumption240 W260 W
Size (HxWxD)107x332x243 mm99x332x241 mm
Weight2.6 kg2.42 kg
Color
Added to E-Catalogfebruary 2018june 2017

Lamp type

— HD (High-intensity discharge). General name for gas discharge lamps, i.e. lamps in which the light flow is created by an electrical discharge between the electrodes inside the bulb. In the case of projectors, such lamps can be mercury, metal-halide, and xenon (see above for more details).

LED. LEDs are used as a light source. They provide high brightness with low power consumption.

Laser-LED. Light source based on laser LEDs. It has even greater brightness than classic LED, with relatively low power consumption.

— UHP (Ultra-high performance) — a high-pressure mercury lamp, developed by Philips. Compared to other lamps, it consumes less power, while not inferior in brightness. Projectors on such lamps are smaller and lighter than conventional ones due to a smaller power supply, the cooler operates with a lower noise level. The creators claimed a service life of up to 10,000 hours. One of the most popular types of lamps for projectors today

– UHE (Ultra-High Energy). Variety of UHP lamps (see above).

— UHB (Ultra-high brightness). Another kind of UHP lamps (see above).

— NSH (New Super High Pressure). Also applies to high pressure mercury lamps manufactured by Ushio. Somewhat less popular than UHP and its peers, but also widespread. Estimated operating time is about...2000 hours.

— SHP. High pressure mercury lamps manufactured by Phoenix.

— P-VIP (Video Projector) — a high-pressure mercury lamp from OSRAM. High brightness lamps, service life — 4000 — 6000 hours.

—UHM (Ultra High Performance Lamp of Matsushita) is a high pressure mercury lamp manufactured by Panasonic. Сan be easily changed, operating time, depending on type — 2000 — 5000 hours.

— Xenon. The design and principle of operation of such lamps are similar to high-pressure mercury lamps — light is created due to a discharge in a gaseous medium. However, instead of mercury vapor, in this case, an inert xenon gas under high pressure is used. This allows to create high power lamps (from 2 kW) with the appropriate light flow. Xenon lamps are used primarily in professional models.

— HPM. High-pressure mercury lamp technology developed by Sony and used primarily in its projectors (although other brands are also available). Combines compact size and relatively low cost with high brightness.

— DC. Abbreviation for "direct current". In the case of projector lamps, this designation usually refers to mercury lamps powered by direct current. The operating voltage of such lamps in different models of projectors may be different. Their design usually uses various tricks to improve performance compared to conventional lamps of this type — in particular, increase service life and reduce power consumption without sacrificing brightness.

— AC. This abbreviation stands for "alternating current". Such lamps are similar in almost everything to the DC ones described above, differing from them only in the type of power supply.

Lamp model

The lamp model that the projector is designed for. Most projectors come with lamps included, so this information is not needed for normal use. But when looking for a spare lamp or replacement, information about model can be very useful: finding a spare part by the exact name is much easier than by general data like the brand of the projector.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Colour rendering

The number of individual colour shades that the projector is capable of displaying.

The minimum indicator for modern projection technology is actually 16 million colours (more precisely, 16.7 million is a standard number associated with the features of digital image processing). In the most advanced models, this value can exceed 1 billion. However, two nuances should be taken into account here: firstly, the human eye is able to recognize only about 10 million colour shades, and secondly, not a single modern image output device (projectors, monitors, etc.) cannot cover the entire spectrum of colours visible to the human eye. Therefore, impressive colour performance is more of a marketing ploy than a real indicator of image quality, and in fact it makes sense to pay attention to other characteristics — primarily brightness and contrast (see above), as well as specific data like a colour gamut chart.

Horizontal frequency

Horizontal frequency supported by the projector.

This parameter is relevant when working with analogue video signal. In such a video, the image is formed line by line: each pixel in the line is highlighted in turn, then the next line is highlighted, and so on. The horizontal frequency describes how many times per second the backlight beam runs from edge to edge of the screen. For normal playback, the projector must support the same refresh rate as the input signal was recorded. However, most models support a fairly wide range of frequencies, and there are no problems with support. Also note that if you are not a professional, then when choosing a projector, it is quite possible to focus on the frame rate (see below) — this parameter is simpler and more intuitive, and support for a certain frame rate automatically means support for the corresponding line rate.

Frame rate

Frame rate, simply put, is the frame rate supported by the projector.

For normal playback, it is highly desirable that the frame rate of the projector match the original frame rate of the video signal. However, most modern models do not support a specific frame rate, but a whole range of frequencies, and quite an extensive one at that.

Note that for viewing most video materials, the range from 24 to 60 fps is quite enough. The exception is 3D content, which may require double the frame rate, up to 120Hz (see " 3D Support " for details).

Size

The size of the panel/chip affects the depth and final quality of the image. The larger the panel/chip, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.
BenQ MH534 often compared