Dark mode
United Kingdom
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison wi-Fi

Save List
Add to comparison
MikroTik CRS109-8G-1S-2HnD-IN
MikroTik CRS109-8G-1S-2HnD-IN
Compare prices 2
TOP sellers
Product typerouter
Data input (WAN-port)
Ethernet (RJ45)
SFP (optics)
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Frequency band
2.4GHz
Connection and LAN
LAN
8 ports
1 Gbps
Console LAN
USB 2.01
Antenna and transmitter
Number of antennas2
Antenna typeexternal
Gain4 dBi
2.4 GHz antennas2
Transmitter power29 dBm
Functions
Features
NAT
More features
DHCP server
VPN
DMZ
Security
Safety standards
WPA
WEP
WPA2
General
PoE (input)passive
Power consumption13 W
Operating temperature-40 °C ~ +65 °C
Dimensions200x145x45 mm
Color
Added to E-Catalogseptember 2016

Product type

General device type. Nowadays, in addition to the routers familiar to many (both regular and gaming), you can find ADSL routers, access points(including directional ones), MESH systems, Wi-Fi adapters, Wi-Fi amplifiers and even satellite Internet terminals on the market. Here is a detailed description of these types of equipment:

— Router. Devices known to many as the most popular means of wireless Internet access. However, the use of such electronics is not limited to this — it can also be used to create local networks and for some other, more specific purposes. On the technical side, a router is an access point to a wireless network that supports NAT mode; for more details about this mode, see "Functions and Capabilities", here we note that it is thanks to NAT that it is possible to access the Internet from several computers / gadgets at once, working through one provider account.

— Gaming router. A variation of the routers described above, optimized for use in online games. The features of such devices are support for the latest communication standards, high connection speed with a minimum of lags, as well as the availability of special tools and funct...ions (game traffic priority, connection accelerators, integration with gaming services or even certain online games, etc.). The specific functionality of a gaming router may be different, but if you strive for maximum speed and comfort in online games, it makes sense to choose a device from this category.

— ADSL modem/router. Wireless routers (see above) that provide Internet access through ADSL technology. The key benefit of this technology is that it allows the use of existing telephone networks without the hassle of running wires; at the same time, the Internet and telephone communication work independently and do not interfere with each other. On the other hand, such a connection is inferior to wired Ethernet in terms of speed and functionality (for more details, see "Data input (WAN-port)"); therefore, nowadays, ADSL is gradually “departing from the stage”, and there is not much equipment for this technology on the market.

— Access point. Devices intended mainly for use as a kind of "adapter" between wired networks and wireless devices, as well as for connecting individual network segments to each other via a wireless channel. The fundamental difference between such devices and routers (see above) is the absence of the NAT function (see "Functions and Capabilities") — thus, each wireless device connected to the access point transmits its own IP address to the network. A typical example of a network based on such equipment is a common router for connecting to the Internet, plus several access points located in key locations and connected to the router by wire.

— Directed access point. A variation of the access points described above, in which the coverage area has a clear direction. Simply put, the signal from such a device does not diverge uniformly in all directions, but in a certain direction, in the form of a beam or sector. Such equipment has two main areas of application. The first is situations when the access point needs to be installed not in the centre, but on the edge of the overlapped zone — for example, in the corner of the room. In this case, the directional design allows you to concentrate almost all the transmitter power in the working area, without wasting it on "unnecessary" directions. The second use case is wireless communication over long distances, for example, between networks in different buildings in bridge mode (see "Features"); in some directional access points, the communication range reaches 10 km. Of course, for such communication, the device on the other side of the wireless channel must also have the appropriate range, so the easiest way in such cases is to use two access points with the same characteristics.

— MESH system. Equipment for building wireless networks in MESH format. The idea of this format is to use numerous compact and relatively low-power wireless transceivers that can interact with each other in a coordinated manner. In this way, you can block a significant area (up to a small city), providing a reliable connection at any point in the coverage area. This happens as follows: a laptop, smartphone or other Wi-Fi gadget interacts with the nearest node of the MESH network, then the data is transmitted to the main router or access point wirelessly, along the chain between the nodes. In this case, the so-called dynamic routing is used: the network itself determines the optimal data transfer path and automatically changes this path when the user moves between individual nodes.
Actually, dynamic routing is the key difference between MESH devices and more traditional Wi-Fi amplifiers. At the same time, the work is carried out in a “seamless” format: when switching from one node to another, the connection is not lost and network functions that require a stable connection (downloads, watching videos, online games, authorization sessions) are not interrupted. In other words, the user does not notice switching between individual nodes at all. In addition, this format of operation allows you to maintain a stable connection speed (whereas the use of traditional amplifiers, especially in the form of chains, significantly reduces the speed). Thus, a MESH network can be an excellent solution for situations where a set of several Wi-Fi amplifiers is needed — from a private house on 2-3 floors to office and industrial complexes, and even urban areas. At the same time, equipment for such networks can be sold in sets of several units (up to 8); see "Included" for details.

— Wi-Fi adapter. Adapters for connecting to Wi-Fi networks designed for desktop PCs and other equipment that does not initially have built-in Wi-Fi modules. Such equipment can be both external and internal — see "Interfaces (for adapters)" for details. Also note here that buying a Wi-Fi adapter can be a good alternative to a wired connection — especially if the router is located far away and it would be inconvenient to pull the wire.

— Wi-Fi booster. Devices designed to amplify the Wi-Fi signal from an existing router or access point. They allow you to expand the coverage area, get rid of "dead zones", as well as improve the overall quality of communication and make the signal more stable. This type of device differs from MESH equipment (see above), which has a similar purpose, in the absence of dynamic routing (Wi-Fi amplifiers are designed to work directly with the router, in extreme cases, via a fixed chain), as well as the impossibility of seamless operation (the amplifier is visible as separate network — see "Features — Repeater Mode" for details). In addition, connecting through such a device can significantly reduce the speed. On the other hand, Wi-Fi amplifiers are much cheaper than nodes in MESH systems. So this particular type of equipment may be the best option for simple domestic use, when you only need to slightly expand the existing coverage and there is no need to build an extensive network with many equivalent connection points.

Satellite Internet (Starlink). Terminals for accessing the World Wide Web via satellite communications. The infrastructure of such systems usually consists of low-orbit satellites in space, a network of base stations on the ground, and client terminals directly for receiving signals and distributing the Internet. The monopolist in this area is Elon Musk’s company SpaceX with its Starlink terminals.

With the introduction of satellite systems into mass use, it became possible to provide high-speed Internet access in places where this was previously impossible due to the lack or poor development of traditional methods of data transmission. At the same time, such Internet will come in handy during regular power outages and far from electrical civilization. The main thing is to power the client terminal. Among the disadvantages of the technology, the high cost of equipment and the high monthly fee for using satellite Internet services (compared to a traditional cable connection or using mobile access to the global network) are noted.

Data input (WAN-port)

Methods for connecting to the Internet (or other external network, such as in bridge mode) supported by the device.

The classic, most common version of such a connection nowadays is LAN (Ethernet), but this is not limited to this. A wired connection can also be made via ADSL or SFP fiber, and wirelessly via mobile networks (using a SIM card, SIM card 5G or an external modem for 3G or 4G), as well as via Wi-Fi. Here is a more detailed description of each option:

— Ethernet (RJ45). Classic wired connection via a network cable via an RJ-45 connector. Also known as "LAN", although this designation is not entirely correct. Nowadays, it is one of the most common methods of wired Internet connection, and is also widely used in local networks. This is due to the fact that the speed of Ethernet is actually limited only by the capabilities of network controllers; at the same time, even the simplest modules support up to 100 Mbps, and in advanced equipment this value can reach 10 Gbps.

— ADSL. A technology primarily used for wired Internet connections over existing landline telephone lines. This is its main advantage — you can use ready-made lines without fiddling with laying numerous addi...tional wires; at the same time, ADSL works independently of telephone calls and does not interfere with them. At the same time, the speed of such a connection is noticeably lower than via Ethernet — even in advanced equipment it does not exceed 24 Mbps. In addition, ADSL traffic is distributed asymmetrically: full speed is achieved only when working for reception, data transmission speed is much lower, which creates problems for video communication and some other tasks. So nowadays, ADSL is gradually being replaced by more advanced standards, although the complete disappearance of this technology is still far away.

— Wi-Fi. Connect to an external data source via Wi-Fi. By definition, this format of operation is used by Wi-Fi adapters (see "Device type"), as well as by most MESH equipment. (However, if the MESH system package includes both nodes and the main control device for them, then the WAN input can be specified for the control device, and often this is not Wi-Fi). Also, this type of data input can be provided in other types of equipment — in particular, routers and access points (for example, to work in bridge or repeater mode).

— 3G modem (USB). Internet connection via 3G mobile network using a separate external modem connected to the USB port. Most often, we are talking about UMTS networks (the development of GSM mobile communications), the most common in Europe and the post-Soviet space; however, it may also be possible to use modems for CDMA networks (EV-DO technology). These nuances, as well as compatibility with specific modem models, need to be clarified separately. However, anyway, 3G may be a good option for situations where a wired Internet connection is difficult or impossible, such as in the private sector. In addition, some Wi-Fi devices with this feature are equipped with autonomous power supplies and can even be used on the go. The data transfer speed of 3G is close to broadband wired connection (from 2 to 70 Mbps with a normal signal, depending on the specific technology); however, it is less than in 4G networks (see below), but 3G coverage is more extensive, and equipment for this standard is cheaper.

— 4G (LTE) modem (USB). Internet connection via 4G mobile network (LTE) using a separate external modem connected to the USB port. The main features are similar to the 3G connection described above, adjusted for the fact that in this case more advanced fourth-generation networks are used. The data transfer rate in such networks reaches about 150 Mbps; they are not as widespread as 3G-connection, but soon we can expect a change in the situation. In addition, it should be noted that in Europe and the post-Soviet space, LTE networks are usually deployed on the basis of 3G UMTS and GSM networks; so in the absence of full-fledged 4G coverage, modems for such networks can work according to the 3G and even GSM standard.

— SIM card. Connecting to the Internet via a mobile network using a mobile operator's SIM card installed directly in the device. The specific type of supported networks depends both on the capabilities of the router and on the conditions of a particular mobile operator; however, all such equipment is compatible with at least 3G networks, and often 4G as well. The features of these networks are described in detail above (you can also read about the advantages of a mobile Internet connection there). This option is convenient because it allows you to do without a separate USB modem — you just need to purchase a SIM card, the cost of which is negligible. In addition, the use of "sim cards" has a positive effect on compactness and ease of carrying. On the other hand, the built-in mobile communication module significantly affects the overall cost — and you will have to pay for it anyway (whereas a model with support for external modems does not have to be bought immediately with a modem, such devices usually allow wired connection). Therefore, you should pay attention to this option if you initially plan to connect to the Internet through mobile networks.

- SIM card (5G). The ability to operate Wi-Fi equipment in high-speed 5G mobile networks with a peak bandwidth of up to 20 Gbps for reception and up to 10 Gbps for data transmission. Implemented via a SIM card with appropriate 5G support. This standard reduces power consumption compared to previous versions, and it also uses a number of complex solutions aimed at improving the reliability and overall quality of communication - in particular, multi-element antenna arrays (Massive MIMO) and beamforming technologies (Beamforming).

— SFP (optics). Connection via fiber optic cable of the SFP standard. Such a connection can be carried out at high speeds (measured in gigabytes per second), and the fiber, unlike the Ethernet cable, is practically insensitive to external interference. On the other hand, the support of this standard is not cheap, and its capabilities are unnecessary for domestic use. Therefore, SFP is found mainly in professional-level Wi-Fi devices.

Wi-Fi standards

Wi-Fi standards supported by the equipment. Nowadays, in addition to modern standards Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax)(its variation Wi-Fi 6E), Wi-Fi 7 (802.11be) and WiGig (802.11ad), you can meet also support for earlier versions — Wi-Fi 3 (802.11g) and even Wi-Fi 1 (802.11b). Here is a more detailed description of each of these versions:

— Wi-Fi 3 (802.11g). An outdated standard, like Wi-Fi 1 (802.11b), which has sunk into oblivion. It was widely used before the advent of Wi-Fi 4, nowadays it is used mainly as an addition to newer versions — in particular, in order to ensure compatibility with outdated and low-cost equipment. Operates at a frequency of 2.4 GHz, the maximum data transfer rate is 54 Mbps.

— Wi-Fi 4 (802.11n). The first of the common standards that supports the frequency of 5 GHz; can operate in this range or in the classic 2.4 GHz. It is worth emphasizing that some models of Wi-Fi equipment for this standard use only 5 GHz, which is why they are incompatible with earlier versions of Wi-Fi. The maximum speed for Wi-Fi 4 is 600 Mbps; in modern wireless devices, this standard is very popular, only recently it began to be squeezed into this position by Wi-Fi 5.

— Wi-Fi 5...(802.11ac). The successor to Wi-Fi 4, which finally moved to the 5 GHz band, which had a positive effect on the reliability of the connection and data transfer rate: it is up to 1.69 Gbps per antenna and up to 6.77 Gbps in general. In addition, this is the first version to fully implement Beamforming technology (for more details, see "Functions and Capabilities").

— Wi-Fi 6, Wi-Fi 6E (802.11ax). The development of Wi-Fi 5, which introduced both an increase in speed to 10 Gbps, and a number of important improvements in the format of work. One of the most important innovations is the use of an extensive frequency range — from 1 to 7 GHz; this, in particular, allows you to automatically select the least loaded frequency band, which has a positive effect on the speed and reliability of the connection. At the same time, Wi-Fi 6 devices are capable of operating at classic frequencies of 2.4 GHz and 5 GHz, and a modification of the Wi-Fi 6E standard is capable of operating at frequencies from 5.9 to 7 GHz, it is generally accepted that devices with Wi-Fi 6E support operate on frequency of 6 GHz, while there is full compatibility with earlier standards. In addition, some improvements were introduced in this version regarding the simultaneous operation of several devices on one channel, in particular, we are talking about OFDMA technology. Thanks to this, Wi-Fi 6 gives the smallest of modern standards a drop in speed when the air is loaded, and the modification of Wi-Fi 6E operating at a frequency of 6 GHz has the least amount of interference.

— Wi-Fi 7 (802.11be). This Wi-Fi standard began to be implemented in 2023. Thanks to the use of 4096-QAM modulation, a maximum theoretical data rate of up to 46 Gb / s can be squeezed out of it. Wi-Fi 7 supports three frequency bands: 2.4 GHz, 5 GHz and 6 GHz. The maximum bandwidth in the standard has been increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit overnight. Among the interesting innovations in Wi-Fi 7, the development of MLO (Multi-Link Operation) is noted - with its help, connected devices exchange data using several channels and frequency bands simultaneously, which is especially important for VR and online games. The Multiple Resource Unit technology is designed to minimize communication delays when there are many connected client devices. The new 16x16 MIMO protocol is also aimed at increasing throughput with a large number of simultaneous connections, doubling the number of spatial streams compared to the previous Wi-Fi 6 standard.

WiGig (802.11ad). Wi-Fi standard using an operating frequency of 60 GHz; data transfer rates can be up to 10 Gbps (depending on the specific version of WiGig). The 60 GHz channel is much less loaded than the more popular 2.4 GHz and 5 GHz, which has a positive effect on the reliability of data transmission and reduces latency; the latter is especially important in games and some other special tasks. On the other hand, the increase in frequency has significantly reduced the connection range (for more details, see "Frequency range"), so that in fact this standard is only suitable for communication within the same room.

Note that in fact, the data transfer rate is usually much lower than the theoretical maximum — especially when several Wi-Fi devices operate on the same channel. Also note that different standards are backwards compatible with each other (with a speed limit according to the slower one) provided that the frequencies match: for example, 802.11ac can work with 802.11n, but not with 802.11g.

Frequency band

Standard Wi-Fi frequency bands supported by the device.

This parameter is directly related to the Wi-Fi standards (see above) that the equipment complies with. At the same time, there are standards that cover several bands at once (such as Wi-Fi 4 and Wi-Fi 6), and not every device compatible with them supports all these bands at once; so in such cases this point should be clarified separately. In addition, the frequencies commonly used nowadays have common features, here they are:

— 2.4 GHz. Classic range: used in the earliest Wi-Fi standards, and supported by many modern versions. Therefore, quite a lot of Wi-Fi equipment still works only at 2.4 GHz(although exceptions are increasingly common). The main advantages of such equipment are simplicity, low cost, and compatibility even with frankly outdated wireless devices. On the other hand, the 2.4 GHz band is extremely busy: in addition to numerous Wi-Fi devices, it is also used by Bluetooth modules and some other types of electronics. This may degrade the quality and speed of the connection.

— 5 GHz. A band introduced to overcome the shortcomings of 2.4 GHz — in particular, to offload communication channels and separate Wi-Fi from other wireless technologies. In addition, increasing the frequency allowed to increase the communication speed. 5 GHz is used as one of the operating frequencies in the Wi-Fi 4 and Wi-Fi 6 standards (see above) and as the only one...in Wi-Fi 5. So you can find devices on the market that operate only at 5 GHz, but more widespread received equipment with multiple bands, where this frequency is only one of the supported.

— 6 GHz. An unloaded frequency introduced into use since the Wi-Fi 6E generation. The new range provides the ability to simultaneously operate numerous client devices at high speed with a minimum amount of interference and delays in signal transmission. At the moment, this is the freest, widest and fastest Wi-Fi range. However, in some regions, the 6 GHz frequency remains unavailable due to the occupancy of the band by means of military, fixed or radio relay wireless communications.

— 60 GHz. Range implemented in the WiGig standard; today it is used only in it, and as the only one. A significant increase in frequency compared to the more common 2.4 GHz and 5 GHz options has a positive effect on the quality of communication. So, with the same theoretical maximum as that of Wi-Fi 6 (10 Gbps), the WiGig standard gives a higher actual data exchange rate, as well as fewer delays and lags; this is especially important in games and some specific tasks. The downside of these advantages is a small communication range: even when using Beamforming (see "Functions and Capabilities"), it does not exceed 10 m in open space, and an obstacle like a wall can become insurmountable for a 60 GHz channel. Therefore, in Wi-Fi equipment, this frequency is found mainly among rather specific devices — access points (including directional ones), which are designed to connect individual network segments in bridge mode (see ibid.). It is this mode of use that is one of the most optimal, given the properties of this range. However, 60 GHz support is also increasingly found in consumer gadgets (smartphones, laptops), so routers are also being released for this frequency.

— Natural frequency. In rare cases, the operation of Wi-Fi equipment is possible at natural frequencies that do not fall under the standard generally accepted values. Such devices are mainly used to build point-to-point and point-to-multipoint radio bridges. Their advantages include low frequency noise from standard Wi-Fi networks, and, as a result, increased communication range. It is worth noting that it is impossible to connect directly to such devices from a laptop or smartphone. It is also necessary to take into account the legislative aspect, since in each country the use of frequencies is regulated differently.

LAN

In this case, LAN means standard network connectors (known as RJ-45) designed for wired connection of LAN devices — PCs, servers, additional access points, etc. The number of ports corresponds to the number of devices that can be directly connected to wired equipment. way.

In terms of speed, 100 Mbps (Fast Ethernet) and 1 Gbps (Gigabit Ethernet) are the most popular options today. At the same time, thanks to the development of technology, more and more gigabit devices are being produced, although in fact this speed is critical only when transferring large amounts of information. At the same time, some models, in addition to the standard speed of the main LAN ports, may have a 2.5 Gbps, 5 Gbps and even 10 Gbps LAN port with increased bandwidth.

Console LAN

Port for remote control of equipment from a console server - a specialized network computer with the ability to configure network devices via an Ethernet connection.

USB 2.0

The number of USB 2.0 ports provided in the design of the device.

USB in this case plays the role of a universal interface for connecting peripheral devices to the router. The specific USB devices supported and how they are used may vary. Examples include working with a flash drive that plays the role of a drive for working in FTP or file server mode (see "Functions / Capabilities"), connecting to a printer in print server mode(see ibid), connecting a 3G modem (See "Data input (WAN-port)"), etc.

Specifically, USB 2.0 allows you to transfer data at speeds up to 480 Mbps. This is noticeably less than that of more advanced standards (starting with USB 3.2 gen1 described below), and the power supply of such connectors is low. However, even such characteristics are often quite enough, taking into account the specifics of the use of Wi-Fi devices. In addition, peripherals for newer versions can also be connected to the USB 2.0 port — the main thing is that the power supply is enough. Therefore, although this standard is considered obsolete, it is still widely used in modern wireless equipment. There are even models that provide 2 or even more USB 2.0 ports; this allows you to simultaneously use several external devices at once — for example, a 3G modem and a USB flash drive.

Number of antennas

The total number of antennas (of all types — see below) provided in the design of the device.

In modern Wi-Fi equipment, this indicator can be different: in addition to the simplest devices with 1 antenna, there are models where this number is 2, 3, 4 and even more. The point of using multiple antennas is twofold. Firstly, if there are several external devices per antenna, they have to share the bandwidth among themselves, and the actual communication speed for each subscriber drops accordingly. Secondly, such a design may also be required when communicating with one external device — to work with MU-MIMO technology (see below), which allows you to fully realize the capabilities of modern Wi-Fi standards.

Anyway, more antennas, usually, means a more advanced and functional device. On the other hand, this parameter significantly affects the cost; so specifically looking for equipment with numerous antennas makes sense mainly when the speed and stability of communication are critical.

Note that antennas intended for mobile communications may also be considered in this clause. So when choosing a model with support for mobile networks, it's ok to clarify this point.

Antenna type

External. Outdoor antennas tend to be larger than indoor antennas, and they usually have swivel mounts that allow the rod to be placed in the optimal position, regardless of the position of the device itself. All this has a positive effect on signal strength. In addition, there are removable external antennas — if desired, they can be replaced with more powerful ones. The main disadvantage of this option can be called bulkiness.

— Internal. Antennas located inside the case are considered less advanced than external ones. In most cases, they are smaller, and the performance depends on the position of the device (although many manufacturers use technologies to compensate for this effect). At the same time, equipment with internal antennas has a neat appearance without unnecessary protruding parts.

— External / internal. The presence in the device at once of both types of antennas described above (in this case, there may be more than one of those and others). The presence of several antennas improves the quality of communication, but if they are all external, the device may turn out to be too bulky. Therefore, in some models of routers, a compromise is used: part of the antennas is hidden in the case, which has a positive effect on compactness and appearance.
MikroTik CRS109-8G-1S-2HnD-IN often compared