Dark mode
United Kingdom
Catalog   /   Photo   /   Binoculars & Telescopes   /   Binoculars & Monoculars

Comparison Eschenbach Farlux Selector V 8-15x35 B vs Yukon 8-24x50

Add to comparison
Eschenbach Farlux Selector V 8-15x35 B
Yukon 8-24x50
Eschenbach Farlux Selector V 8-15x35 BYukon 8-24x50
Outdated Product
from $99.08 up to $159.32
Outdated Product
TOP sellers
Product typebinocularsbinoculars
Magnification15 x24 x
Optical characteristics
Zoom adjustment
Field of view 1 km away70 m70 m
Real angle of view4 °4 °
Min. focus distance3 m7 m
Twilight factor16.720
Relative brightness19.439.1
Phase correction
Diopter adjustment
Diopter correction range±4 D
Design
Lens diameter35 mm50 mm
Exit pupil diameter4.4 mm6.25 mm
Eye relief12 mm15 mm
Focuscentralcentral
PrismRoofPorro
Prism materialBaK-4
Interpupillary adjustment
Nitrogen filled
General
Dustproof, water resistant
Case
Tripod adapter
Bodymagnesium alloycarbon fibre
Size155x129x56 mm197x217x70 mm
Weight900 g1100 g
Color
Added to E-Catalogjuly 2018july 2014

Magnification

The magnification factor indicates how many times the image of any object in the eyepiece will be larger than what is visible to the naked eye. Standard values are 7x, 8x, 10x, 12x, 20x. The higher the magnification, the greater the degree of approximation and the further the distance from which one or another object can be seen through binoculars. On the other hand, increasing the magnification usually means decreasing the angle of view, and it can be very difficult to “catch” an object of interest (especially a moving one) through binoculars. In addition, with the same lens size, a model with a higher magnification will have a smaller exit pupil size and, accordingly, a lower aperture ratio (see below for more details). For models with multiplicity adjustment (see below), this item usually indicates the maximum value of this parameter. The magnification is the first number in traditional markings like 8x40 - this example corresponds to eight-fold optics. If there is a multiplicity adjustment (see below), the markings indicate the entire range - for example, 8-12x40.

Min. focus distance

The smallest distance to the observed object, at which it will be clearly visible through binoculars / monoculars. All such optical instruments were initially created for observing remote objects, therefore, not all of them are able to work at short distances. When choosing a model for this parameter, one should proceed from the expected observation conditions: ideally, the minimum focus distance should not be greater than the smallest possible distance to the observed object.

Twilight factor

A complex indicator that describes the quality of binoculars / monoculars at dusk — when the illumination is weaker than during the day, but not yet as dim as in the deep evening or at night. It is primarily about the ability to see small details through the device. The need to use this parameter is due to the fact that twilight is a special condition. In daylight, the visibility of small details through binoculars is determined primarily by the magnification of the optics, and in night light, by the diameter of the lens (see below); at dusk, both of these indicators affect the quality. This feature takes into account the twilight factor. Its specific value is calculated as the square root of the product of the multiplicity and the diameter of the lens. For example, for 8x40 binoculars, the twilight factor will be the root of 8x40=320, that is, approximately 17.8. In models with power adjustment (see above), the minimum twilight factor is usually indicated at the lowest magnification, but data is often given for the maximum. The lowest value of this parameter for normal visibility at dusk is considered to be 17. At the same time, it is worth noting that the twilight factor does not take into account the actual light transmission of the system — and it strongly depends on the quality of lenses and prisms, the use of antireflection coatings, etc. Therefore, the actual image quality at dusk for two models with the same twilight factor may differ markedly.

Relative brightness

One of the parameters describing the quality of visibility through an optical device in low light conditions. Relative brightness is denoted as the diameter of the exit pupil (see below) squared; the higher this number, the more light the binoculars/monoculars let through. At the same time, this indicator does not take into account the quality of lenses, prisms and coatings used in the design. Therefore, comparing the two models in terms of relative brightness is only possible approximately, since even if the values are equal, the actual image quality may differ markedly.

Phase correction

The presence of a phase correction system in binoculars / monoculars. This feature enhances image quality, such as resolution and colour reproduction, and minimizes colour distortion. The need to use phase correction is due to the fact that the light waves corresponding to different colours differ in length and penetrating power, which is why they also pass through the optical system in different ways. This may cause image quality degradation. To avoid this, special coatings are used in the prisms installed in the device — they retain the original ratio of colour waves and thus provide phase correction.

Diopter correction range

The range of values in which diopter adjustment can be made (see above). If you wear glasses with diopters, but plan to look through binoculars / monoculars without them, you should choose a model whose range would correspond to the characteristics of the glasses (or at least be as close as possible to them).

Lens diameter

The lens diameter is the front lens of the binocular/monocular. This parameter is also called "aperture". Designate it in millimetres. Aperture is one of the most important characteristics of an optical device: it describes the amount of light that the device is able to "capture" into the lens, and largely determines the image quality in low light. Therefore, the second number in the traditional marking of binoculars / monoculars is precisely the diameter of the lens — for example, 8x40 mm corresponds to 8x binoculars with an aperture of 40 mm. In addition, with a large lens it is easier to provide a wide field of view without sacrificing magnification. In general, the larger the aperture, the more advanced the optical device is considered. On the other hand, the increase in lenses has a corresponding effect on the weight and dimensions of the entire structure. And you should not forget about the influence of individual components of the system (for example, prisms) on the overall image quality.

Exit pupil diameter

The diameter of the exit pupil created by the optical system of a binocular/monocular. The exit pupil is called the projection of the front lens of the lens, built by the optics in the region of the eyepiece; this image can be observed in the form of a characteristic light circle, if you look into the eyepiece not close, but from a distance of 30 – 40 cm. The diameter of this circle is measured according to a special formula — dividing the diameter of the lens by the multiplicity (see above). For example, an 8x40 model would have a pupil diameter of 40/8=5mm. This indicator determines the overall aperture of the device and, accordingly, the image quality in low light: the larger the pupil diameter, the brighter the “picture” will be (of course, with the same quality of prisms and glasses, because they also affect the brightness). In addition, it is believed that the diameter of the exit pupil should be no less than that of the pupil of the human eye — and the size of the latter can vary. So, in daylight, the pupil in the eye has a size of 2-3 mm, and in the dark — 7-8 mm in adolescents and adults, and about 5 mm in the elderly. This point should be taken into account when choosing a model for specific conditions: after all, fast models are expensive, and it hardly makes sense to overpay for a large pupil if you need binoculars exclusively for daytime use.

Eye relief

The offset is the distance between the eyepiece lens and the exit pupil of an optical instrument (see "Exit Pupil Diameter"). Optimum image quality is achieved when the exit pupil is projected directly into the observer's eye; so from a practical point of view, offset is the distance from the eye to the eyepiece lens that provides the best visibility and does not darken the edges (vignetting). A large offset is especially important if the binoculars / monoculars are planned to be used simultaneously with glasses — because in such cases it is not possible to bring the eyepiece close to the eye.
Yukon 8-24x50 often compared