United Kingdom
Catalog   /   Camping & Fishing   /   Air Guns & Weapons   /   Sights

Comparison Hawke Vantage 3-9x40 AO 30/30 vs Hawke Vantage IR 3-9x40 AO

Add to comparison
Hawke Vantage 3-9x40 AO 30/30
Hawke Vantage IR 3-9x40 AO
Hawke Vantage 3-9x40 AO 30/30Hawke Vantage IR 3-9x40 AO
Compare prices 1
from £109.99 
Expecting restock
TOP sellers
Typeopticoptic
Designenclosedenclosed
Optical characteristics
Magnification3 – 9 x3 – 9 x
Magnification adjustment
Lens diameter40 mm40 mm
Exit pupil diameter13.3 – 4.4 mm13.3 – 4.4 mm
Offset of the exit pupil89 mm89 mm
Field of view at 100 m13 – 4.2 m13 – 4.2 m
Twilight factor10.9510.95
Brightness177.8177.8
Measuring units of the sightMOAMOA
Adjustment division value0.25 MOA0.25 MOA
Parallax adjustmentbody ring (AO)body ring (AO)
Diopter adjustment
Zero setting
Lens coatingfull multilayer enlightenmentfull multilayer enlightenment
Aiming mark
Reticlein the 2nd focal plane (SFP)in the 2nd focal plane (SFP)
Reticle type
duplex /30/30/
 
 
reticle with graduations
Reticle measuring unitsMRADMRAD
Aiming mark illumination
 /central reticle/
Backlight brightness adjustments
Selection of aiming mark colour
 /red, green/
More features
More features
dust-, waterproof
shockproof
nitrogen filled /nitrogen/
dust-, waterproof
shockproof
nitrogen filled
Elevation drumenclosedenclosed
Power source
Power sourceCR2032
General
Weapon compatibilitylarge-caliberlarge-caliber
Mounting ring diameter25.4 mm25.4 mm
Materialmetalmetal
Country of originUnited KingdomUnited Kingdom
Sight length322 mm322 mm
Weight482 g507 g
Added to E-Catalogaugust 2016february 2016

Zero setting

The scope has a zero adjustment function. This function is used during the initial sighting of optical sights (see "Type") for a specific rifle and ammunition, and later it greatly simplifies the work with vertical and horizontal corrections. Its essence is as follows

The process of zeroing in optics, roughly speaking, is the selection of such a position of the drums, in which at a distance of 100 m the sight ensures a clear hit at the aiming point (taking into account the spread of the weapon, of course). Such settings are taken as zero, it is from them that all further corrections are counted. However, the scales of the drums already show certain values by the time they are brought to this position — because of this, when you subsequently enter corrections, you can get confused in the number of clicks, make a mistake when returning the sight to its original settings, etc. The zero setting solves the problem: after zeroing, it is possible to rearrange the scales of the drums to the zero position without knocking down the settings of the adjusted sight. Thus, all subsequent corrections of the hands will be able to count from zero values on the scale, and to return to the original settings, it is enough to return the drums to the same zeros.

The specific method and features of such a setting may be different, usually, they are described in detail in the instruction manual. Here we note that this function is highly desir...able for sights used in high-precision (sniper) shooting, where you have to work a lot and often with amendments.

Reticle type

The type of aiming mark (reticle) provided in the device. There are models for which several options are indicated at once: this implies the possibility of switching between them.

As for specific varieties, in collimators, all brands have a common specificity - they should provide the convenience of quick aiming at relatively short distances. But the reticles of optical and other similar sights can be divided into hunting and tactical (sniper) sights. The former are relatively simple and have a minimum of additional elements, as they are designed for short distances and relatively large targets; and the latter are designed for high-precision shooting, military and police use, and therefore must be supplemented with various elements for measuring angles and taking corrections on the go, including between shots.

Among the specific types of grids most popular in our time are the cross with divisions, BDC, duplex, cross, half-cross, cross with a dot, cross with a circle, herringbone, rangefinder, dot, circle with a dot and circle with 2 points. Here are th...e main features of each:

— Cross with divisions. One of the most popular types of "tactical" reticles used in optical sights. The key element is the crosshair, on the lines of which additional dots are applied. The distance between the points corresponds to a strictly defined angular size; initially it was 1 MRAD (1 "mil", hence the name), however, in modern sights, other values \u200b\u200bcan be found, they should be specified according to the instructions. In addition, such grids can differ in the number of points, the presence of thickening on the lines (as in the duplexes described below), etc. Be that as it may, such a grid is very convenient for estimating distances and making corrections on the fly, many professional shooters consider it almost ideal for high-precision shooting, including at long distances, besides, the original cross with divisions (Mil-Dot) is widely used by military and police snipers around the world.
We also note that there is also a collimator variety of "mildots" - in this case, the grid looks like a circle with a dot in the middle and several dots below it, with an interval of the same 1 MRAD. However, when using collimators, the real need for making vertical corrections rarely arises, and this option is not widely used.

- Duplex. Reticles for optical and night sights (see "Type"), which look like a classic crosshair with different line thicknesses: they are thin in the center, and noticeably thicker near the edges. The meaning of this combination is that thin lines do not “clutter up” the field of view at the aiming point, and thick lines remain visible even under adverse conditions (for example, at dusk) and allow you to aim at least approximately. In addition, the thickness of large lines and the distance between their edges can correspond to well-defined angles, which allows some of these sights to be used even as simple goniometers. However, these possibilities are very limited, and in general, "duplexes" are classic hunting nets.

- Half cross. Hunting net, the main elements of which are T-shaped. One of the varieties of semi-crosses - "German grid", it is also "stump" - consists of a vertical line from the edge to the center of the sight and two horizontal lines that do not reach it; the aiming point corresponds to the upper point of the central "stump", and the thickness of the lines and the distance between them can be specified in the documentation - this allows you to carry out the simplest measurements of angles. A more modern version of the half-cross is the crosshair, in which one line (from the center to the top edge) is much thinner than the rest, or even absent altogether.

- Dot. In its pure form, the dot is used exclusively in collimator sights (see "Type"). This is an extremely convenient option for such devices: there are no unnecessary details in the field of view of the shooter, only a mark that clearly shows exactly where the weapon is aimed - more is often not required when using collimators. The disadvantages of the dot in comparison with other marks in the sights of this type include less visibility, especially in bright ambient light. However, many sights allow you to set a fairly high brightness of the mark, and sometimes even increase its size, increasing visibility. Also note that for a point, the angular size can be specified, which can be useful for quick estimation of distances.
In addition, the dot can also be used in optical and night sights, but in such cases it is usually used as an addition to another scale - for example, it additionally highlights the intersection of lines in a semi-cross.

— Circle with a dot. Another type of marks, used in collimators as the main one, and in other types of sights - as an addition to a crosshair or other more traditional grid. However, the latter is rare, so let's focus on the first option. Compared to another popular "collimator" mark - a dot - the circle covers more visible space, however, it is very noticeable and often turns out to be more convenient when shooting offhand or sharply turning the weapon to the side. In addition, for both the circle and the dot, it often indicates the exact angular size, which gives extended (compared to the usual dot) possibilities for using the aiming mark as the simplest goniometric (rangefinding) scale.

- Circle with 2 dots. A variation of the circle with a point described on top, having a second, additional point - usually below the first, at a strictly defined angular distance from it. This expands the possibilities for using the sight as an impromptu rangefinder, and also allows you to "on the move" take an amendment when shooting at long distances - just aim at the second, lower point. However, such opportunities for collimators are extremely rarely required, so this option has not received much distribution either.

- Cross. Features of this type of brand depend on the type of sights in question - optical / night or collimator (see "Type"). In classical optics, a cross is the simplest crosshair of thin lines of the same thickness. Naturally, in terms of general specialization, such reticles are hunting, but they are also found in a fairly advanced variety of sights - sports models for benchrest (shooting from a machine gun at maximum range and accuracy). The convenience of the cross in such an application lies in the fact that the lines have a minimum thickness and practically do not block the view. In nightlights, this type of grid is usually one of several options available to choose from. But in collimators, the cross is in many ways similar to a circle with a dot - it is provided as one of the large, well-marked marks with a clearly defined angular size.

- Cross with a dot. A grid in the form of a crosshair of two lines (as a rule, quite thin), at the intersection of which a clearly visible point is applied. It is in this form, as a rule, that is used in collimator and other types of sights. In the first case, such a stamp is actually a slightly modified version of the usual cross (see on top). And in optics, the presence of a point allows you to additionally highlight the crosshairs, which is convenient in some situations; the general purpose of such sights is, of course, hunting.

- A cross with a circle. Stamp in the form of a cross, complemented by a circle. It can also be used in different types of sights and has its own specialization everywhere. In classical optics, such a grid usually has a hunting purpose, although there are also varieties with additional marks that expand the "tactical" functions. And even in the absence of such marks in the characteristics, the angular size of the circle is usually specified, which provides additional opportunities for impromptu measurement of distances. We also note that the cross itself can be both ordinary and duplex (see on top). The situation is similar in night sights, however, there a cross with a circle is usually only one of the available mark options. As for the collimators, they can use both a full-fledged crosshair in a circle, and a ring with “rays” protruding from it; in any case, such a mark is more noticeable than an ordinary cross.

— BDC. This reticle got its name from the English phrase Bullet Drop Compensation, which translates as “bullet drop compensation”. The BDC ballistic reticle allows for range correction based on the bullet's trajectory. It is calibrated for a specific ammunition and sharpened for quick aiming at various distances using the same type of bullets. Distance markers in a ballistic reticle are hash marks, circles, or dots. The main sign of their placement is that the vertical markings have different gaps, increasing towards the bottom. An additional distance scale is often placed in such grids on the "six" shoulder. In addition, the ammunition for which the reticle is calibrated is usually indicated (caliber, bullet weight, weight).

- Christmas tree. Informative reticle resembling a Christmas tree in its structure. Actually, this is where the name of this type of grid came from. Each array of dots on its "six o'clock" arm is longer than the previous one - the marks increase in width when viewed from top to bottom from the central crosshair. These markers are used to correct for wind drift, which is extremely important when conducting aimed fire at long distances. The most common herringbone reticle is found in hunting hybrids, tactical sights, and military rifle scopes.

- Rangefinder. This type includes all grids that do not belong to any of the types described on top and provide for special markings for measuring angles and distances. The specific design of such markings may be different, but the general principle of operation is the same everywhere: rangefinder marks allow you to determine the angular size of a visible object, and if the linear size of this object is known, you can easily estimate the distance to it (at least approximately). Each type of rangefinder reticle has its own rules for use.

Aiming mark illumination

The presence in the sight of a special illumination for the aiming mark.

Collimator models, "night lights" and thermal imagers (see "Type") have this function by definition — in fact, the aiming mark itself in them represents either a light mark on the lens (in the first case), or a set of pixels on the screen (in the rest). But for traditional optics, this feature is far from mandatory and is intended mainly for specific cases — for example, when a dark target is on a dark background, which makes the unlit reticle almost invisible. Note that the backlight usually requires a battery to work; there are systems that do not require power (tritium illumination), but they are practically never found in civilian sights.

Backlight brightness adjustments

The ability to adjust the brightness with which the aiming mark is illuminated.

Such adjustment can be provided in all types of illuminated sights (see above). It allows you to optimally adjust the backlight to the specifics of the situation: for example, if the background in the field of view of the optics is very dark, a too bright grid will “cut the eye” against its background; and for a collimator in bright sunlight, maximum brightness may be required — otherwise the mark will be poorly visible.

Selection of aiming mark colour

The ability to change the colour of the aiming mark, more precisely, the colour with which it is highlighted (see above). This adjustment performs both an aesthetic and a practical function — against different backgrounds, some colours stand out more than others, and choosing the optimal colour allows you to make the brand as noticeable as possible.

Power source

The type of power used in the scope, in fact, describes the type of autonomous element (accumulator or battery) that the device is designed for.

The most popular elements in modern sights are CR2032 elements — characteristic "pills" with a diameter of 20 mm and a thickness of about 3 mm. Their shape fits very well into the layout of both optics and classical collimators (see "Type"), and the capacity, although relatively low, is quite sufficient for normal operation for a long time, because the power consumption of these types of sights is low. But in more “gluttonous” night, thermal imaging (see ibid) and holographic (see above) models, more solid batteries are usually used — most often either a pair of standard “finger” AA cells, or a 3.7 V CR123 element (diameter 17.5 mm, length 35 mm). In this case, the sight can be compatible with either one of these types, or both. It is also worth noting that AA and CR123 elements are also available as rechargeable batteries, which can be perfect for frequent use of the scope.
Hawke Vantage 3-9x40 AO 30/30 often compared
Hawke Vantage IR 3-9x40 AO often compared