United Kingdom
Catalog   /   Photo   /   Binoculars & Telescopes   /   Spotting Scopes

Comparison Vixen Geoma 65A vs Praktica Delta 20-60x77/45 WP

Add to comparison
Vixen Geoma 65A
Praktica Delta 20-60x77/45 WP
Vixen Geoma 65APraktica Delta 20-60x77/45 WP
from $250.88 up to $255.28
Outdated Product
from $204.12 up to $211.68
Outdated Product
TOP sellers
Magnification20 x20 – 60 x
Optical systemlenslens
Field of view 1 km away45 m29.3 – 14.8 m
Angle of view2.6 °1.68 – 0.85 °
Min. focus distance4 m8 m
Design
Lens diameter65 mm77 mm
Exit pupil diameter3.25 mm3.8 – 1.3 mm
Eye relief19 mm18 – 15 mm
Focusscrew on the casescrew on the case
Changeable eyepiece
Eyepiece locationat 45°at 45°
Anti reflective coatingfull multilayermultilayer
Prism typePorroPorro
Prism materialBaK-4BK-7
Digiscoping
Swivel body
Nitrogen filled
 /nitrogen/
 /nitrogen/
Dust-, waterproof
General
Case
 /nylon/
Bodyrubberizedrubberized polycarbonate
Dimensions325х80х107 mm437x125x145 mm
Weight795 g1450 g
Added to E-Catalogoctober 2016october 2016

Magnification

The magnification of the image provided by a telescope. Roughly speaking, this parameter describes how many times the object seen in the eyepiece of the pipe will be larger than when viewed from the same distance with the naked eye.

Multiplicity — the first number (numbers) in the digital marking of optical instruments: for example, the designation 25-75x50 corresponds to a multiplicity from 25x to 75x. Note that most modern telescopes have variable (adjustable) magnification. This allows you to choose the mode of operation depending on the situation: to search for the desired object, it is more convenient to reduce the magnification, providing a wide field of view, and having found it, increase the magnification and examine in detail. However in some models, to change the magnification, you need to replace the eyepiece (see "Replacement eyepiece").

High magnification, on the one hand, makes the tube "long-range" and makes it easy to examine small objects at considerable distances. On the other hand, the angle of view decreases in this case, which makes it difficult to observe moving objects and even aim the optics at the target. In addition, with an increase in the magnification, the diameter of the exit pupil also decreases (see below) and the aperture ratio of the tube; you can compensate for this moment by increasing the lens, but this accordingly affects the price. So it makes sense to specifically look for powerful optics with a high degree of ma...gnification only when such capabilities are fundamentally important.

Field of view 1 km away

The field of view of the telescope at a distance of 1 km to the objects under consideration, the so-called "linear field of view". In fact, this is the width (diameter) of the space that falls into the field of view when observed from a distance of 1 km.

This parameter is widely used in the characteristics of telescopes along with the angular field of view (see below): the linear field of view data is more visual and closer to practice, it allows you to evaluate the capabilities of a telescope without resorting to special calculations.

For models of variable magnification (the majority of them), the linear field of view is indicated in the form of two numbers — for the minimum and for the maximum magnification.

Angle of view

Angle of view provided by a telescope.

If you draw two lines from the centre of the lens to two opposite points along the edges of the field of view of the pipe, the angle between these lines will correspond to the angular field of view. Accordingly, the larger the angle, the wider the field of view; however, individual items in it will look smaller. Conversely, an increase in magnification is inevitably associated with a decrease in the viewing angle. And since most modern telescopes have a variable magnification, the angular field of view is also variable, and in the characteristics this indicator is indicated in the form of two numbers — for the minimum and for the maximum magnification.

Min. focus distance

The smallest distance to the object under consideration at which the telescope is able to fully focus on it — that is, the minimum distance at which the image in the eyepiece will remain clear.

Spotting scopes were originally designed for viewing distant objects, so focus problems can occur if the distance is too small. Thus, manufacturers indicate this parameter in the characteristics. However, even in the most powerful and "long-range" models, the minimum focus distance is about 25 m — at this distance, the naked eye is often enough. Therefore, you should pay attention to this parameter only in cases where the ability to work normally close is of fundamental importance — for example, if the pipe is used at a shooting range, where the distance to the targets can be different, including pretty small.

Lens diameter

The diameter of the objective is the front lens of the telescope. The term "aperture" is also used for this characteristic.

The lens diameter is one of the most important characteristics of an optical system: the amount of light entering the lens and, accordingly, the image quality (especially in low light) directly depend on the aperture. From the point of view of optical characteristics, we can definitely say that the larger the lens, the better, especially at high magnification (for more details, see “Exit Pupil Diameter”). On the other hand, large lenses significantly affect the size, weight, and most importantly, the cost of telescopes. Therefore, manufacturers usually choose the lens size taking into account the magnification, price category and the specifics of the use of a telescope — especially since at low magnifications and good lighting, even a relatively small aperture may well provide a high-quality image. For more information about these patterns, see "Exit Pupil Diameter". In addition, it is worth noting that the features of the "picture" are affected not only by the mathematical characteristics of the optics, but also by the overall quality of its components.

Exit pupil diameter

Exit pupil diameter of a spyglass.

The exit pupil is the projection of the image "seen" by the tube that appears just behind the eyepiece. A person sees an image in a telescope precisely due to the fact that the exit pupil is projected onto the eye.

The exit pupil diameter corresponds to the size of the lens divided by the magnification (see above for both). For example, for a pipe with an aperture of 50 mm, operating at a magnification of 25x, this size will be 50/25 = 2 mm. At the same time, it is believed that in order to ensure the most bright and comfortable image, the exit pupil should be no smaller than the pupil of the observer's eye — and this is 2-3 mm in the light and up to 8 mm (in the elderly — up to 5-6 mm) at dusk. This is the reason why for comfortable work at high magnifications and/or in low light conditions, a telescope must have a fairly large lens. However, most of these optical devices are designed for daytime use, and for this, an exit pupil of 1.33 mm in size is sufficient.

For most modern telescopes, the exit pupil diameter is indicated by two numbers — for the minimum and for the maximum magnification.

Eye relief

Removal of the exit pupil of a telescope.

About the exit pupil itself, see above. Here we note that the offset is such a distance from the eyepiece lens to the observer's eye, at which the size of the visible image from the lens corresponds to the visible size of the eyepiece lens. In other words, the observed "image" in this case occupies the entire space of the eyepiece, without vignetting (darkening at the edges) and without "spreading" beyond the edges of the eyepiece. In this case, the overall image quality will be the best.

When looking down the pipe with the naked eye, the observer usually has no problem getting into the offset distance, and this parameter can be ignored. Problems can arise if the user wears glasses and the diopter adjustment (see above) is not sufficient to comfortably view without glasses. In such cases, it is desirable to use models with eye relief of at least 15 mm: although such a distance will not provide the highest image quality when viewed with glasses, it will allow using the device without any special difficulties. However, in modern telescopes, this parameter can reach 18 mm or even more.

Also note that eye relief may decrease somewhat with increasing magnification; in such cases, two numbers are indicated in the characteristics, corresponding to the removal at the minimum and at the maximum magnification.

Changeable eyepiece

The ability to remove the telescope eyepiece and replace it with another one.

The eyepiece is one of the key parts of an optical device, which determines not only comfort for the user, but also quite practical working moments. So, the magnification factor depends on the characteristics of this part (see above) — up to the point that in some telescopes the magnification change is carried out exclusively by changing the eyepieces. Some allow the installation of different eyepieces — with a fixed or variable magnification. In addition, eyepieces can also differ in eye relief, diopter correction range (see above for both) and other practical characteristics.

Note that this feature is typical mainly for premium-level models. At the same time, not all eyepieces available for this model are usually supplied in the kit. When choosing an “eye”, it should be taken into account separately that many manufacturers do not produce eyepieces for all pipes of their brand, but for individual series or even single models; so the issue of compatibility must be approached very carefully.

Anti reflective coating

The type of optics enlightenment provided in the telescope.

Enlightenment is called a special coating applied to the surface of the lens. This coating is designed to reduce light loss at the air-glass interface. Such losses inevitably arise due to the reflection of light, and the anti-reflective coating "turns" the reflected rays back, thus increasing the light transmission of the lens. In addition, this function reduces the amount of glare on objects visible through a telescope.

Enlightenment types can be:

Single layer. This marking means that one or more surfaces of the lenses (but not all) have been coated with a single layer of anti-reflection coating. This is inexpensive and can be used even in entry-level optical devices. On the other hand, it filters out a certain spectrum of light, which distorts the colour reproduction in the visible image — sometimes quite noticeably. In addition, in this case, on some surfaces of the lenses there is no coating at all, which inevitably leads to the appearance of glare in the field of view. Thus, single-layer enlightenment is the simplest variety and is used extremely rarely, mainly in low-cost models.

Full single layer. A variation of the single-layer coating described above, in which an anti-reflection coating is present on all lens surfaces (at each air-glass interface). Although this option is also characterized...by colour distortion, it is devoid of another, the most key drawback of “incomplete” enlightenments — glare in the field of view. And the mentioned colour rendition distortion is most often not critical. With all this, full single-layer enlightenment is relatively inexpensive, due to which it is very popular in spyglasses of primary and primary-intermediate levels.

— Multi-layered. A type of coating in which a multilayer reflective coating is applied to one or more lens surfaces (but not all). The advantage of such a coating over a single-layer coating is that it evenly transmits almost the entire visible spectrum and does not create noticeable colour distortions. The absence of a coating on individual surfaces reduces the cost of the device (compared to full multilayer coating), but it is impossible to completely get rid of glare in such a system.

— Full multilayer. The most advanced and effective of today's types of coating: a multi-layer coating is applied to all lens surfaces. Thus, high brightness and clarity of the “picture” are achieved, with natural colour reproduction and the absence of glare. The disadvantage of this classic option is the high cost; accordingly, full multilayer enlightenment is typical mainly for high-end telescopes.
Praktica Delta 20-60x77/45 WP often compared