Dark mode
United Kingdom
Catalog   /   Photo   /   Camera Lenses

Comparison Sigma 17-50mm f/2.8 AF OS HSM EX DC vs Sigma 18-50mm f/2.8-4.5 OS AF HSM DC

Add to comparison
Sigma 17-50mm f/2.8 AF OS HSM EX DC
Sigma 18-50mm f/2.8-4.5 OS AF HSM DC
Sigma 17-50mm f/2.8 AF OS HSM EX DCSigma 18-50mm f/2.8-4.5 OS AF HSM DC
from £362.00 
Outdated Product
from $250.00
Outdated Product
TOP sellers
Main functionmultifunctionalmultifunctional
System
Canon
Nikon
Minolta
Pentax
Sigma
Sony
Canon
Nikon
Minolta
Pentax
Sigma
Sony
Mount
Canon EF-S
Nikon F
Pentax K
Sigma SA
Sony A
Canon EF-S
Nikon F
Pentax K
Sigma SA
Sony A
Specs
Focal length17 - 50 mm18 - 50 mm
Aperture valuef/2.8f/2.8 - f/4.5
Viewing angles72.4°-27.9°69.3° - 27.9°
Min. diaphragm2222
Minimum focus distance0.28 m0.3 m
Maximum zoom0.20.24
Design
Sensor sizeAPS-CAPS-C
Autofocus driveultrasonic drive motorultrasonic drive motor
Image stabilization
Design (elements/groups)17 elements in 13 groups17 elements in 11 groups
Number of diaphragm blades77
Filter diameter77 mm67 mm
Dimensions (diameter/length)83.5x91.8 mm74x88.6 mm
Weight565 g395 g
Added to E-Catalogfebruary 2010march 2009

Aperture value

Lens aperture is a characteristic that determines how much the lens attenuates the light flux passing through it. It depends on two main characteristics — the diameter of the active aperture of the lens and the focal length — and in the classical form is written as the ratio of the first to the second, while the diameter of the active aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8 or f/2.0. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.

Zoom lenses usually have different aperture values for different focal lengths. In this case, the characteristics indicate two aperture values, for the minimum and maximum focal lengths, respectively, for example: f / 4.5-5.6

The larger the aperture of the lens, the shorter shutter speeds it allows you to use when shooting. This is especially important when shooting fast-moving subjects, shooting in low light, etc. And if necessary, the light stream transmitted by the lens can be weakened using a diaphragm (see below).

Another point that directly depends on this indicator is the depth o...f field (the depth of space that is in focus when shooting). The higher the aperture, the smaller the depth of field, and vice versa. Therefore, shooting with artistic background blur (bokeh) requires high-aperture optics, and for a large depth of field, you have to cover the aperture.

Viewing angles

This parameter determines the size of the area of the scene being shot that falls into the frame. The wider the viewing angles, the larger the area the lens can capture in one shot. They are directly related to the focal length of the lens (see "Focal length"), and also depend on the size of the specific matrix with which the optics are used: for the same lens, the smaller the matrix, the smaller the viewing angles, and vice versa. On our website, in the characteristics of optics, viewing angles are usually indicated when used with the matrix for which the lens was originally designed (for more details, see "Matrix Size").

Minimum focus distance

Minimum focus distance (m) - the smallest distance from which you can focus on an object and take a photo. Usually it ranges from 20 cm for wide-angle lenses to several metres for telephoto. In the macro mode of the camera or with the help of macro lenses, this distance can be less than 1 centimeter.

Maximum zoom

The degree of magnification of the object being shot when using a lens for macro shooting (that is, shooting small objects at the maximum possible approximation, when the distance to the subject is measured in millimetres). The degree of magnification in this case means the ratio of the size of the image of the object obtained on the matrix of the camera to the actual size of the object being shot. For example, with an object size of 15 mm and a magnification factor of 0.3, the image of this object on the matrix will have a size of 15x0.3=4.5 mm. With the same matrix size, the larger the magnification factor, the larger the image size of the object on the matrix, the more pixels fall on this object, respectively, the clearer the resulting image, the more details it can convey and the better the lens is suitable for macro photography. It is believed that in order to obtain macro shots of relatively acceptable quality, the magnification factor should be at least 0.25 – 0.3.

Design (elements/groups)

The number of elements (in fact, the number of lenses) included in the design of the lens, as well as the number of groups in which these elements are combined. Usually, the more elements provided in the design, the better the lens handles with distortions (aberrations) when light passes through it. On the other hand, numerous lenses increases the dimensions and weight of the optics, reduces light transmission (for more details, see "Aperture") and also puts forward increased requirements for the quality of processing, which affects the cost of the lens.

Filter diameter

Thread diameter for installation on the filter lens. Light filters are devices for changing the parameters of the light flux entering the lens. They can be used for highlighting individual colours, coloring the entire image in one colour, darkening the image, correcting colour temperature and light balance, shooting in the infrared range, etc. Also, a light filter can play the role of protection against pollution. For successful installation on the lens, the diameter of the filter must match the diameter of the filter specified for this model of optics.
Sigma 17-50mm f/2.8 AF OS HSM EX DC often compared