United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison NAVIEN Prime-24K 24 kW vs NAVIEN Deluxe-24K 24 kW

Add to comparison
NAVIEN Prime-24K 24 kW
NAVIEN Deluxe-24K 24 kW
NAVIEN Prime-24K 24 kWNAVIEN Deluxe-24K 24 kW
Outdated Product
from $453.86 up to $650.18
Outdated Product
TOP sellers
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area192 m²192 m²
Technical specs
Heat output24 kW24 kW
Power supply230 V230 V
Power consumption150 W150 W
Coolant min. T40 °С40 °С
Coolant max. T80 °С80 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure8 bar8 bar
Consumer specs
DHW min. T30 °С30 °С
DHW max. T60 °С60 °С
Performance (ΔT=25°C)13.8 L/min13.8 L/min
"Summer" mode
Warm start
Circulation pump
Boiler specs
Efficiency91 %90.5 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter
60/100 mm /80/80 mm for separate/
80/80 mm /separated/
Max. gas consumption0.95 m³/h2.58 m³/h
Heat exchangerstainless steel
Connections
Mains water intake1/2"1/2"
DHW flow1/2"1/2"
Gas supply1/2"1/2"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
frost protection
gas pressure drop
water overheating
flame loss
draft control
frost protection
More specs
Dimensions (HxWxD)695x440x290 mm695x440x265 mm
Weight28 kg28 kg
Added to E-Catalogapril 2015october 2014

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.

Flue diameter

The diameter of the pipe through which combustion products are discharged from the combustion chamber.

In boilers with a closed combustion chamber often used the coaxial flue, consisting of two pipes nested one inside the other. At the same time, products of combustion are discharged from the combustion chamber through the inner pipe, and the air is supplied through the gap between the inner and outer ones. For such flues, the diameter is usually shown in the form of two numbers — the diameter of the inner and outer pipes, respectively. The most popular values are 60/100, 80/80 and 80/125. Non-coaxial flues can be 100, 110, 125, 130, 140, 150, 160, 180 and 200 mm.

Max. gas consumption

Maximum gas consumption in the boiler with the corresponding energy source (see above). Achieved when the gas heater is operating at full capacity; with reduced power and consumption, respectively, will be lower.

Note that boilers of the same power may differ in gas consumption due to the difference in efficiency. While the more fuel-efficient models tend to cost more, the price difference pays off in gas savings.

Heat exchanger

The material of the primary heat exchanger, in which thermal energy from hot combustion products is transferred to the heat medium. The efficiency of the boiler, the heating rate and the service life of the unit directly depend on the material of the heat exchanger.

Copper. Copper is a material with the best heat dissipation specs and high corrosion resistance. It heats up quickly, which allows you to save energy during the operation of the heating boiler, has a low roughness coefficient, and has a long service life. The only drawback of this metal is its high cost. Copper heat exchangers are installed in heavy mid-range and premium grade equipment.

Aluminium. Aluminium as a heat exchanger material is characterized by excellent thermal conductivity and long service life. Moreover, it is cheaper than copper. To reduce the cost of production in copper heat exchangers, they try to reduce the wall thickness. You don't need to do this with aluminium.

Cast iron. Boilers with a cast-iron heat exchanger heat up for a long time and cool down slowly, retaining heat for a long time after heating stops. Cast iron is also notable for its high heat capacity and low susceptibility to corrosion. The service life of a cast iron unit can be 30 or 50 years. The reverse side of the coin is the huge weight and size of hea...ting equipment, which is why boilers with cast-iron heat exchangers are produced mainly in floor-standing boilers. In addition, cast iron does not tolerate sudden temperature changes — they can cause cracks.

Steel. Steel heat exchangers in heating boilers are the most widely used. Steel has a combination of high ductility and strength when exposed to high temperatures, is inexpensive, and can be easily processed at production stages. However, steel heat exchangers are susceptible to corrosion. As a result, they are not as durable.

Stainless steel. Stainless steel heat exchangers are rare in heating boilers, which is explained by the high cost of using this material. But they combine the advantages of both cast iron and steel. Stainless steel exhibits high corrosion resistance, resistance to thermal shocks, low inertia, and long service life.
NAVIEN Deluxe-24K often compared