United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison BAXI LUNA Platinum 1.24 GA 24 kW vs BAXI LUNA Duo-tec 1.24 24 kW

Add to comparison
BAXI LUNA Platinum 1.24 GA 24 kW
BAXI LUNA Duo-tec 1.24 24 kW
BAXI LUNA Platinum 1.24 GA 24 kWBAXI LUNA Duo-tec 1.24 24 kW
from $1,244.08 up to $1,318.14
Outdated Product
from $1,048.52 up to $1,145.46
Outdated Product
TOP sellers
Energy sourcegasgas
Installationwallwall
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area180 m²180 m²
Condensing
Additional equipment
Remote control unit
Technical specs
Heat output24 kW24 kW
Min. heat output2.4 kW
Power supply230 V230 V
Power consumption120 W102 W
Coolant min. T25 °С25 °С
Coolant max. T80 °С80 °С
Heating circuit max. pressure3 bar3 bar
Consumer specs
Outdoor temperature sensor
Heated floor mode
Circulation pump
Programmable thermostat
Boiler specs
Efficiency107.6 %105.7 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter
60/100 mm /80/80 mm for separate/
60/100, 80/125 mm /80/80 for split flue/
Inlet gas pressure20 mbar20 mbar
Max. gas consumption2.61 m³/h2.61 m³/h
Expansion vessel capacity8 L8 L
Expansion vessel pressure0.8 bar
Connections
Gas supply3/4"3/4"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
frost protection
gas pressure drop
water overheating
flame loss
draft control
frost protection
More specs
Dimensions (HxWxD)763x450x345 mm763x450x345 mm
Weight34.5 kg34.5 kg
Added to E-Catalogseptember 2013march 2013

Remote control unit

Remote control unit that allows you to control the boiler from another room. It can be connected both wired and wirelessly, often equipped with an electronic display to indicate operating modes, set temperature, emergency situations, etc. Many of these units are advanced devices with the ability to programme the operation of the boiler, for example, for a week; some models can be equipped with temperature sensors that automatically adjust the intensity of the boiler depending on the temperature in the room.

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Outdoor temperature sensor

The outdoor temperature sensor allows you to monitor the outdoor weather conditions and automatically adjust the operation of the boiler to them — increase the heating power when the outside temperature drops and decrease it when it rises.

Heated floor mode

The boiler has a special mode for underfloor heating systems.

Underfloor heating differs from conventional heating systems primarily by a lower coolant temperature — otherwise the floor could be too hot for comfortable use (plus, high temperatures are also undesirable for flooring and furniture installed on it). In addition, boilers with this function are distinguished by increased pump power. In order to ensure efficient circulation of the coolant through branched heating circuits that have rather high resistance.

Programmable thermostat

The presence of a programmable thermostat in the design of the boiler.

Programmable thermostat is a device that allows not only to maintain the temperature but also to programme the operation of the boiler for a certain time. The simplest programmable thermostats cover a day, and more advanced ones allow you to set the operating mode for individual days of the week. Anyway, this function provides additional convenience and eliminates the need to adjust the operation of the boiler manually. On the other hand, the presence of a programmable thermostat affects the cost.

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.

Flue diameter

The diameter of the pipe through which combustion products are discharged from the combustion chamber.

In boilers with a closed combustion chamber often used the coaxial flue, consisting of two pipes nested one inside the other. At the same time, products of combustion are discharged from the combustion chamber through the inner pipe, and the air is supplied through the gap between the inner and outer ones. For such flues, the diameter is usually shown in the form of two numbers — the diameter of the inner and outer pipes, respectively. The most popular values are 60/100, 80/80 and 80/125. Non-coaxial flues can be 100, 110, 125, 130, 140, 150, 160, 180 and 200 mm.

Expansion vessel pressure

It is a pressure in the hermetically sealed part of the expansion vessel (for details on the design, see Expansion vessel capacity). The required pressure in the expansion vessel must be approximately 0.3 bar higher than the initial pressure in the system. The initial pressure, in turn, directly depends on the total height of the heating system or, rather on the difference between the height of the highest and lowest points of the heating system. It can be derived using the approximate formula P=H/10, where P is the initial pressure in the bar, and H is the height difference between the highest and lowest point of the system in metres. Thus, if the height difference is 2 m, the initial pressure in the system is 0.2 bar, and the pressure in the expansion tank must be at least 0.5 bar.
BAXI LUNA Duo-tec 1.24 often compared