United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Protherm Medved 40 KLOM 35 kW vs Protherm Medved 40 PLO 35 kW

Add to comparison
Protherm Medved 40 KLOM 35 kW
Protherm Medved 40 PLO 35 kW
Protherm Medved 40 KLOM 35 kWProtherm Medved 40 PLO 35 kW
from $885.38 up to $1,201.24
Outdated Product
from $1,016.59 up to $1,379.44
Outdated Product
User reviews
0
0
0
3
TOP sellers
Energy sourcegasgas
Installationfloorfloor
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area262 m²262 m²
Technical specs
Heat output35 kW35 kW
Power supply230 V230 V
Power consumption20 W20 W
Coolant min. T45 °С45 °С
Coolant max. T90 °С90 °С
Heating circuit max. pressure3 bar4 bar
Consumer specs
Circulation pump
Control buseBus
Boiler specs
Efficiency92 %92 %
Combustion chamberopen (atmospheric)open (atmospheric)
Flue diameter150 mm150 mm
Inlet gas pressure20 mbar18 mbar
Max. gas consumption4.1 m³/h4 m³/h
Heat exchangercast iron
Connections
Mains water intake1/2"
DHW flow1/2"
Gas supply3/4"3/4"
Central heating flow1"1"
Central heating return1"1"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
power outage
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
 
power outage
 
 
More specs
Dimensions (HxWxD)880x505x600 mm880x505x600 mm
Weight130 kg130 kg
Added to E-Catalogseptember 2010september 2010

Heating circuit max. pressure

The maximum pressure in the heating circuit of the boiler, at which it remains operational, and there is no risk of physical damage to the structure. For a heating system, the maximum pressure is usually about 3 bar, and for a domestic hot water circuit up to 10 bar. When the maximum pressure is exceeded, a safety valve is activated, and part of the water is discharged from the system until a normal pressure level is reached.

Control bus

The control bus with which the boiler is compatible.

The control bus is a communication channel through which control and controlled devices can exchange data. Support for such a channel greatly simplifies the connection of thermostats and other control automation. It is enough that such devices are compatible with the same bus as the boiler. In addition, many types of tyres allow you to create very extensive monitoring and control systems and easily integrate various devices into them, including heating boilers.

In modern heating technology, the most popular tyres are OpenTherm, eBus, Bus BridgeNet and EMS. Here are their key features:

— OpenTherm. A fairly simple standard with modest functionality: it allows only a direct connection between the control and the controlled device and is not designed to create extensive systems. On the other hand, this bus has quite advanced capabilities for controlling heaters: in particular, it allows you to control the temperature not just by turning the boiler on/off, but by changing the power of the gas burner. This mode of operation contributes to saving fuel/energy, as well as reduces wear and increases the life of the heater; and in many cases, a system of two devices (boiler and thermostat) is quite enough for effective heating control. At the same time, the OpenThe...rm standard is simple and inexpensive to implement, which makes it extremely popular in modern boilers. For several reasons, it is mainly used in gas models.

— eBUS. A control bus that has some pretty impressive features. Allows you to combine up to 25 control and 228 controlled devices in one system, with a data transmission distance between individual components up to 1 km. At the same time, eBUS is an open standard, its implementation (at least within the framework of the main functions) is freely available to everyone. And although nowadays eBUS support can be found mainly in Protherm and Vaillant equipment. However, in boilers, this is the second most popular type of control bus, after OpenTherm. It is mainly due to slightly higher cost, while advanced eBUS capabilities are not needed as often.

— Bus BridgeNet. Hotpoint-Ariston proprietary development, used exclusively in boilers of this brand. One of the advantages is a high degree of automation: the user only needs to set the temperature parameters (and for different zones, you can choose custom options) and, if desired, a weekly programme, the rest of the necessary calculations and adjustments will be carried out by the system. However, such features are available only in special control devices such as temperature controllers; in boilers, Bus BridgeNet support usually means only compatibility with such automation.

— EMS. A control bus used primarily in Bosch and Buderus equipment. In general, it is characterized by wide functionality, a high degree of automation and the ability to create extensive control systems. However, note that nowadays you can find both the original EMS and the modified EMS Plus, and these standards are not initially compatible with each other (although support for both of them may well be provided in some devices). So the specific version of the EMS bus should be specified separately. We note that in Bosch devices there is mainly an original version, and in Buderus devices — EMS Plus (although exceptions are possible there and there).

Inlet gas pressure

It is the optimum gas pressure supplied to the inlet of the boiler system. Most often indicated for natural gas and is about 15-20 mbar. This parameter must match the specs of the gas supply system. However, the pressure in the latter may be higher, which may require the installation of a special gas regulator.

Max. gas consumption

Maximum gas consumption in the boiler with the corresponding energy source (see above). Achieved when the gas heater is operating at full capacity; with reduced power and consumption, respectively, will be lower.

Note that boilers of the same power may differ in gas consumption due to the difference in efficiency. While the more fuel-efficient models tend to cost more, the price difference pays off in gas savings.

Heat exchanger

The material of the primary heat exchanger, in which thermal energy from hot combustion products is transferred to the heat medium. The efficiency of the boiler, the heating rate and the service life of the unit directly depend on the material of the heat exchanger.

Copper. Copper is a material with the best heat dissipation specs and high corrosion resistance. It heats up quickly, which allows you to save energy during the operation of the heating boiler, has a low roughness coefficient, and has a long service life. The only drawback of this metal is its high cost. Copper heat exchangers are installed in heavy mid-range and premium grade equipment.

Aluminium. Aluminium as a heat exchanger material is characterized by excellent thermal conductivity and long service life. Moreover, it is cheaper than copper. To reduce the cost of production in copper heat exchangers, they try to reduce the wall thickness. You don't need to do this with aluminium.

Cast iron. Boilers with a cast-iron heat exchanger heat up for a long time and cool down slowly, retaining heat for a long time after heating stops. Cast iron is also notable for its high heat capacity and low susceptibility to corrosion. The service life of a cast iron unit can be 30 or 50 years. The reverse side of the coin is the huge weight and size of hea...ting equipment, which is why boilers with cast-iron heat exchangers are produced mainly in floor-standing boilers. In addition, cast iron does not tolerate sudden temperature changes — they can cause cracks.

Steel. Steel heat exchangers in heating boilers are the most widely used. Steel has a combination of high ductility and strength when exposed to high temperatures, is inexpensive, and can be easily processed at production stages. However, steel heat exchangers are susceptible to corrosion. As a result, they are not as durable.

Stainless steel. Stainless steel heat exchangers are rare in heating boilers, which is explained by the high cost of using this material. But they combine the advantages of both cast iron and steel. Stainless steel exhibits high corrosion resistance, resistance to thermal shocks, low inertia, and long service life.

Mains water intake

The diameter of the pipe for connecting the pipe through which cold water is supplied to the boiler for heating and use in the hot water supply system.

Diameters are indicated in inches. It is allowed to connect a pipe of a different diameter through an adapter, but the best option is still a match in size. There are connection options 1/2", 3/4", 1" and 1 1/2".

DHW flow

The diameter of the pipe for connecting the pipe through which hot water leaves the boiler for the DHW system.

Diameters are indicated in inches. It is allowed to connect a pipe of a different diameter through an adapter, but the best option is still a match in size.

Safety systems

Gas pressure drop. This protection system ensures that the boiler is switched off in the event of a critical drop in gas pressure, insufficient for the normal functioning of the burner. In the event of such a fall, the valve that supplies gas to the burner is closed and blocked. After the restoration of gas pressure, it also remains closed; it is necessary to open it and resume the gas supply manually.

Water overheating. A temperature sensor automatically turns off the boiler when the temperature of the water in the system is critically exceeded.

Flame loss. Flame loss protection is based on a sensor that monitors the combustion of gas and automatically stops its supply. It prevents the room from filling with gas and the possible tragic consequences of this.

Draft control. In boilers with an open combustion chamber, to maintain normal conditions in the room where such a boiler is installed, constant removal of products of combustion into the atmosphere is necessary. The lack of a normal draft in the chimney can lead to the accumulation of combustion products in the room. The draft protection system prevents this by automatically turning off the boiler when it detects the release of combustion products outside the chimney.

Power outage. Most modern boilers h...ave an electronic control system; in addition, many structural elements (pumps, valves, fans, etc.) are also powered by electricity. Thus, a power outage during the operation of the boiler will inevitably lead to an abnormal mode of operation, which is fraught with breakdowns and even accidents. To prevent such cases, a power outage protection system is installed, which completely stops the operation of the boiler in the event of a power outage. When the power supply is restored, the boiler needs to be restarted manually.

Water circulation failure. This protection system controls the normal movement of the water through the heating circuit. Water circulation failure can lead to overheating of some elements of the boiler and damage to it. To avoid this, if the circulation is disturbed, the system turns off the pump and shuts off the gas supply to the burner.

Frost protection. A system that controls the temperature in the heating circuit. Freezing of the liquid in the circuit disrupts the normal operation of the heating, which may require heating of the pipes and lead to system damage. To avoid this, when the water temperature drops below 5 °C, the burner is ignited, the circulation pump is activated, and the circuit warms up to a temperature of about 35 °C — thus preventing the formation of ice in the pipes.
Protherm Medved 40 KLOM often compared
Protherm Medved 40 PLO often compared